TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (402 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (129 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140779 times)
  2. FAT32 Library (73368 times)
  3. Network Ethernet Library (58201 times)
  4. USB Device Library (48387 times)
  5. Network WiFi Library (43984 times)
  6. FT800 Library (43542 times)
  7. GSM click (30471 times)
  8. mikroSDK (29178 times)
  9. PID Library (27174 times)
  10. microSD click (26850 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

SPIRIT 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Sub-1 GHz Transceivers

Downloaded: 205 times

Not followed.

License: MIT license  

SPIRIT 2 Click features the SP1ML-915, an ultra-low power, fully integrated RF module, which operates at 915 MHz ISM band. This Click board™ can be used to add wireless connectivity to any application, requiring no extensive RF communication experience. The module integrates all the required components, including the 32-bit STM32L1 MCU, a compact chip antenna, and accompanying circuitry. The SP1ML-915 module supports several types of modulation schemes, including 2-FSK, GFSK, GMSK, OOK, and ASK, allowing it to fulfill different RF transmission requirements.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "SPIRIT 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "SPIRIT 2 Click" changes.

Do you want to report abuse regarding "SPIRIT 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


SPIRIT 2 Click

SPIRIT 2 Click features the SP1ML-915, an ultra-low power, fully integrated RF module, which operates at 915 MHz ISM band. This Click board™ can be used to add wireless connectivity to any application, requiring no extensive RF communication experience. The module integrates all the required components, including the 32-bit STM32L1 MCU, a compact chip antenna, and accompanying circuitry. The SP1ML-915 module supports several types of modulation schemes, including 2-FSK, GFSK, GMSK, OOK, and ASK, allowing it to fulfill different RF transmission requirements.

spirit2_click.png

Click Product page


Click library

  • Author : Jelena Milosavljevic
  • Date : Jul 2021.
  • Type : UART type

Software Support

We provide a library for the SPIRIT2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for SPIRIT2 Click driver.

Standard key functions :

  • spirit2_cfg_setup Config Object Initialization function.

    void spirit2_cfg_setup ( spirit2_cfg_t *cfg );
  • spirit2_init Initialization function.

    err_t spirit2_init ( spirit2_t *ctx, spirit2_cfg_t *cfg );

Example key functions :

  • spirit2_power_module Function for power mode of SPIRIT 2 Click.

    void spirit2_power_module ( spirit2_t *ctx, uint8_t power_state );
  • spirit2_reset Function for reseting SPIRIT 2 Click.

    void spirit2_reset ( spirit2_t *ctx );
  • spirit2_set_mode Function for setting mode of SPIRIT 2 Click.

    void spirit2_set_mode ( spirit2_t *ctx, uint8_t mode );

Example Description

This example reads and processes data from SPIRIT2 2 clicks.

The demo application is composed of two sections :

Application Init

Initializes driver and wake-up module.


void application_init ( void ) 
{
    log_cfg_t log_cfg;
    spirit2_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    spirit2_cfg_setup( &cfg );
    SPIRIT2_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    spirit2_init( &spirit2, &cfg );
    Delay_ms ( 1000 );

    log_info( &logger, "---- Configuring the module ----" );
    spirit2_power_module( &spirit2, SPIRIT2_MODULE_WAKE_UP );
    spirit2_reset( &spirit2 );
    spirit2_set_mode( &spirit2, SPIRIT2_OPERATING_MODE );
    Delay_ms ( 1000 );
    log_printf( &logger, "COMMAND MODE\r\n" );
    spirit2_send_cmd( &spirit2, SPIRIT2_CMD_ENTER_COMMAND_MODE );
    spirit2_process( );
    log_printf( &logger, "FIRMWARE VERSION\r\n" );
    spirit2_send_cmd( &spirit2, SPIRIT2_CMD_READ_MODULE_VERSION );
    spirit2_process( );
    log_printf( &logger, "TXRX LED - OPEN DRAIN OUTPUT\r\n" );
    spirit2_send_cmd_with_parameter( &spirit2, SPIRIT2_CMD_CFG_TXRX_LED, SPIRIT2_PCFG_TXRXLED_OPEN_DRAIN );
    spirit2_process( );
    log_printf( &logger, "STORE CONFIG\r\n" );
    spirit2_send_cmd( &spirit2, SPIRIT2_CMD_STORE_CURRENT_CONFIG );
    spirit2_process( );
    log_printf( &logger, "OPERATING MODE\r\n" );
    spirit2_send_cmd( &spirit2, SPIRIT2_CMD_ENTER_OPERATING_MODE );
    spirit2_process( );
    log_info( &logger, "---- The module has been configured ----" );
#ifdef DEMO_APP_RECEIVER
    log_info( &logger, "---- RECEIVER MODE ----" );
#endif 
#ifdef DEMO_APP_TRANSMITTER
    log_info( &logger, "---- TRANSMITTER MODE ----" );
#endif 
    Delay_ms ( 1000 );
}

Application Task

Reads the received data and parses it.


void application_task ( void ) {
#ifdef DEMO_APP_RECEIVER
    spirit2_process( );
#endif   

#ifdef DEMO_APP_TRANSMITTER 
    spirit2_generic_write( &spirit2, TEXT_TO_SEND, strlen( TEXT_TO_SEND ) );
    log_info( &logger, "---- The message has been sent ----" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#endif
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SPIRIT2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

GNSS 11 Click

0

GNSS 11 Click is a compact add-on board that provides fast positioning capability. This board features the EVA-M8M, a concurrent GNSS module from u-blox. The module provides a reception of GPS, GLONASS, Galileo, QZSS, SBAS, and BeiDou. It delivers high sensitivity and minimal acquisition times, with concurrent reception of up to three GNSS, achieved by a dual-frequency RF front-end architecture. This Click board™ makes the perfect solution for the development of both acquisition and tracking devices and represents an ideal product for automotive, consumer, and industrial tracking applications.

[Learn More]

Angle Click

0

Angle Click is a precise Hall-effect angle sensing Click board that can be used to measure the rotational angle of the magnetic field in the X-Y plane above it (parallel to the surface of the Click), through the whole range of 360°.

[Learn More]

Hall Current 18 Click

0

Hall Current 18 Click is a compact add-on board that contains a precise solution for AC/DC current sensing. This board features the MCS1806, an isolated Hall-effect current sensor from MPS. The sensor is immune to external magnetic fields via differential sensing and has no magnetic hysteresis. The MCS1806 features galvanic isolation between the pins of the primary conductive path and the sensor leads, allowing it to replace optoisolators and other isolation devices.

[Learn More]