TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141818 times)
  2. FAT32 Library (74953 times)
  3. Network Ethernet Library (59310 times)
  4. USB Device Library (49305 times)
  5. Network WiFi Library (45103 times)
  6. FT800 Library (44672 times)
  7. GSM click (31286 times)
  8. mikroSDK (30212 times)
  9. microSD click (27657 times)
  10. PID Library (27562 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Load Cell 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Force

Downloaded: 387 times

Not followed.

License: MIT license  

Load Cell 4 Click is a compact add-on board that contains a resistive sensor signal conditioner with a fast power-up data output response. This board features the ZSC31014, a CMOS integrated circuit for highly accurate amplification and analog-to-digital conversion of differential and half-bridge input signals from Renesas.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Load Cell 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Load Cell 4 Click" changes.

Do you want to report abuse regarding "Load Cell 4 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Load Cell 4 Click

Load Cell 4 Click is a compact add-on board that contains a resistive sensor signal conditioner with a fast power-up data output response. This board features the ZSC31014, a CMOS integrated circuit for highly accurate amplification and analog-to-digital conversion of differential and half-bridge input signals from Renesas.

loadcell4_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jul 2021.
  • Type : I2C type

Software Support

We provide a library for the LoadCell4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for LoadCell4 Click driver.

Standard key functions :

  • loadcell4_cfg_setup Config Object Initialization function.

    void loadcell4_cfg_setup ( loadcell4_cfg_t *cfg );
  • loadcell4_init Initialization function.

    err_t loadcell4_init ( loadcell4_t *ctx, loadcell4_cfg_t *cfg );
  • loadcell4_default_cfg Click Default Configuration function.

    err_t loadcell4_default_cfg ( loadcell4_t *ctx );

Example key functions :

  • loadcell4_power_dev Enable power function.

    void loadcell4_power_dev ( loadcell4_t *ctx, uint8_t power_state );
  • loadcell4_tare Tare the scales function.

    void loadcell4_tare ( loadcell4_t *ctx, loadcell4_data_t *cell_data );
  • loadcell4_get_weight Get weight function.

    float loadcell4_get_weight ( loadcell4_t *ctx, loadcell4_data_t *cell_data );

Example Description

This is an example that demonstrates the use of the Load Cell 4 Click board.

The demo application is composed of two sections :

Application Init

Initializes I2C driver and performs the power on. Sets tare the scale, calibrate scale and start measurements.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    loadcell4_cfg_t loadcell4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    loadcell4_cfg_setup( &loadcell4_cfg );
    LOADCELL4_MAP_MIKROBUS( loadcell4_cfg, MIKROBUS_1 );
    err_t init_flag = loadcell4_init( &loadcell4, &loadcell4_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    loadcell4_default_cfg ( &loadcell4 );

    loadcell4_power_dev( &loadcell4, LOADCELL4_PWR_ON );
    Delay_ms ( 500 );

    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "     ~~~  STEP 1  ~~~    \r\n" );
    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "     Tare the scale :    \r\n" );
    log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
    log_printf( &logger, " >> Remove all object << \r\n" );
    log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
    log_printf( &logger, " In the following 10 sec \r\n" );
    log_printf( &logger, " please remove all object\r\n" );
    log_printf( &logger, "     from the scale.     \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "    Start tare scales    \r\n" );
    loadcell4_tare( &loadcell4, &cell_data );
    Delay_ms ( 500 );

    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "   Tarring is complete   \r\n" );

    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "     ~~~  STEP 2  ~~~    \r\n" );
    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "    Calibrate Scale :    \r\n" );
    log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
    log_printf( &logger, "   >>> Load etalon <<<   \r\n" );
    log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
    log_printf( &logger, " In the following 10 sec \r\n" );
    log_printf( &logger, "place 100 g weight etalon\r\n" );
    log_printf( &logger, "    on the scale for     \r\n" );
    log_printf( &logger, "   calibration purpose.  \r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "    Start calibration    \r\n" );

    if ( loadcell4_calibration( &loadcell4, LOADCELL4_WEIGHT_100G, &cell_data ) == LOADCELL4_OK ) {
        log_printf( &logger, "-------------------------\r\n" );
        log_printf( &logger, "    Calibration  Done    \r\n" );
        log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
        log_printf( &logger, "  >>> Remove etalon <<<  \r\n" );
        log_printf( &logger, "- - - - - - - - - - - - -\r\n" );
        log_printf( &logger, " In the following 10 sec \r\n" );
        log_printf( &logger, "   remove 100 g weight   \r\n" );
        log_printf( &logger, "   etalon on the scale.  \r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    } else {
        log_printf( &logger, "-------------------------\r\n" );
        log_printf( &logger, "   Calibration  Error   \r\n" );
        for ( ; ; );
    }

    log_printf( &logger, "-------------------------\r\n" );
    log_printf( &logger, "   Start measurements :  \r\n" );
    log_printf( &logger, "-------------------------\r\n" );
}

Application Task

The Load Cell 4 Click board can be used to measure weight, shows the measurement of scales in grams [ g ]. Results are being sent to the Usart Terminal where you can track their changes. All data logs write on USB uart changes for every 4 sec.


void application_task ( void ) {
    weight_val = loadcell4_get_weight( &loadcell4, &cell_data );
    log_printf( &logger, "     Weight : %.2f g \r\n", weight_val );
    Delay_ms ( 100 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LoadCell4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

DC Motor 11 click

5

DC Motor 11 Click is a brushed DC motor driver with the current limiting and current sensing. It is based on the DRV8830, an integrated H-Bridge driver IC, optimized for motor driving applications.

[Learn More]

IoT ExpressLink 2 Click

0

IoT ExpressLink 2 Click is a compact add-on board that allows users to connect to IoT ExpressLink services easily and securely interact with cloud applications and other services. This board features the SARA-R510AWS, an LTE-M AWS IoT EsxpressLink module from u-blox. It supports a comprehensive set of 3GPP Rel. 14 features that are relevant for IoT applications, like improvements to power consumption, coverage, data rate, mobility, and positioning. They are 5G-ready, meaning customers will be able to (software) upgrade their deployed devices once 5G LTE has been fully rolled out by mobile operators, greatly improving end-product scalability and lifetime.

[Learn More]

UWB 3 Click

0

UWB 3 Click is a compact add-on board that brings Ultra-Wideband communication to your application. This board features the DWM3001, a fully integrated UWB transceiver module from Qorvo. The module integrates the DW3110 IC, nRF52833 MCU, planar UWB antenna, accelerometer, power management, and crystal. It is a fully calibrated, tested, and validated design. This Click board™ makes the perfect solution for the development of precision real-time location systems (RTLS) using two-way ranging or TDoA schemes in various markets, location-aware wireless sensor networks (WSNs), and more.

[Learn More]