TOP Contributors

  1. MIKROE (2654 codes)
  2. Alcides Ramos (352 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136741 times)
  2. FAT32 Library (69952 times)
  3. Network Ethernet Library (55942 times)
  4. USB Device Library (46267 times)
  5. Network WiFi Library (41887 times)
  6. FT800 Library (41173 times)
  7. GSM click (28983 times)
  8. PID Library (26413 times)
  9. mikroSDK (26361 times)
  10. microSD click (25376 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DC Motor 16 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 81 times

Not followed.

License: MIT license  

DC Motor 16 Click is a compact add-on board that contains a high-performance single phase reversible DC motor drive with speed control. This board features the ZXBM5210, a fully-featured DC motor drive solution with an average current capability of up to 700mA from Diodes Incorporated. The ZXBM5210 has several modes of operations selected by two GPIO pins, has a wide supply voltage range from 3V to 18V, and low power consumption.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DC Motor 16 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DC Motor 16 click" changes.

Do you want to report abuse regarding "DC Motor 16 click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


DC Motor 16 click

DC Motor 16 Click is a compact add-on board that contains a high-performance single phase reversible DC motor drive with speed control. This board features the ZXBM5210, a fully-featured DC motor drive solution with an average current capability of up to 700mA from Diodes Incorporated. The ZXBM5210 has several modes of operations selected by two GPIO pins, has a wide supply voltage range from 3V to 18V, and low power consumption.

dcmotor16_click.png

click Product page


Click library

  • Author : Stefan Ilic
  • Date : Aug 2021.
  • Type : SPI type

Software Support

We provide a library for the DCMotor16 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for DCMotor16 Click driver.

Standard key functions :

  • dcmotor16_cfg_setup Config Object Initialization function.

    void dcmotor16_cfg_setup ( dcmotor16_cfg_t *cfg );
  • dcmotor16_init Initialization function.

    err_t dcmotor16_init ( dcmotor16_t *ctx, dcmotor16_cfg_t *cfg );

Example key functions :

  • dcmotor16_set_direction Set motor direction.

    void dcmotor16_set_direction( dcmotor16_t *ctx, uint8_t dir );
  • dcmotor16_ctrl_vref Control motor VRef (speed).

    void dcmotor16_ctrl_vref( dcmotor16_t *ctx, uint16_t value );
  • dcmotor16_stop Motor stop.

    void dcmotor16_stop( dcmotor16_t *ctx );

Example Description

This example shows the capabilities of the DC Motor 16 click board.

The demo application is composed of two sections :

Application Init

Initialization driver init.


void application_init ( void ) {
    log_cfg_t log_cfg;  /**< Logger config object. */
    dcmotor16_cfg_t dcmotor16_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.

    dcmotor16_cfg_setup( &dcmotor16_cfg );
    DCMOTOR16_MAP_MIKROBUS( dcmotor16_cfg, MIKROBUS_1 );
    err_t init_flag  = dcmotor16_init( &dcmotor16, &dcmotor16_cfg );
    if ( SPI_MASTER_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    log_info( &logger, " Application Task " );
}

Application Task

Start motor example with change in motor direction and speed.


void application_task ( void ) {
    uint16_t cnt;

    log_printf( &logger, ">> Motor start with direction [FORWARD] <<\r\n" );
    dcmotor16_set_direction( &dcmotor16, DCMOTOR16_DIR_FORWARD );
    for( cnt = 0; cnt <= 0x0100; cnt+= 25 ) {
        dcmotor16_ctrl_vref( &dcmotor16, cnt );
        Delay_ms ( 250 );
    }
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, ">> Motor stop \r\n" );
    dcmotor16_stop( &dcmotor16 );
    Delay_ms ( 1000 );

    log_printf( &logger, ">> Motor start with direction [BACKWARD] <<\r\n" );
    dcmotor16_set_direction( &dcmotor16, DCMOTOR16_DIR_BACKWARD );
    for( cnt = 0; cnt <= 0x0100; cnt+= 25 ) {
        dcmotor16_ctrl_vref( &dcmotor16, cnt );
        Delay_ms ( 250 );
    }
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf( &logger, ">> Motor stop \r\n" );
    dcmotor16_stop( &dcmotor16 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DCMotor16

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Power Bank 2 click

5

The PowerBank 2 Click is a Click board equipped with the RT9480, highly integrated and easy to use power solution for Li-ion power bank and other powered handheld applications. It’s usually called EZPBS (Easy to Use PowerBank Solution).

[Learn More]

Charger 9 click

0

Charger 9 click is a Li-Ion (Li+, Li-Po) battery charger, capable of charging one, two or three battery cells.

[Learn More]

Gyro 8 click

0

Gyro 8 Click is a compact add-on board that contains a high-performance gyroscope. This board features Murata's SCR2100-D08, a high-performance single-axis angular rate sensor (gyroscope). Based on Murata's proven capacitive 3D-MEMS technology, the SCR2100-D08 is characterized by high stability and reliability, providing immensely stable output over a wide range of temperatures, humidity, and vibration. This high-resolution gyroscope supports ±125°/s X-axis angular rate measurement range, extensive self-diagnostic features, an SPI serial interface, and low power consumption.

[Learn More]