TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (404 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141109 times)
  2. FAT32 Library (73901 times)
  3. Network Ethernet Library (58551 times)
  4. USB Device Library (48723 times)
  5. Network WiFi Library (44376 times)
  6. FT800 Library (43974 times)
  7. GSM click (30720 times)
  8. mikroSDK (29477 times)
  9. PID Library (27299 times)
  10. microSD click (27097 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

SRAM 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.14

mikroSDK Library: 2.0.0.0

Category: SRAM

Downloaded: 290 times

Not followed.

License: MIT license  

SRAM 3 Click is a compact add-on board that contains a serial non-volatile SRAM with a high storage capacity. This board features the ANV32AA1WDK66, a 1Mb serial SRAM with a non-volatile SONOS storage element included with each memory cell organized as 128k words of 8 bits each from Anvo-System Dresden. The serial SRAM provides fast access & cycle times, high data accuracy, ease of use, and unlimited read & write accessed by a high-speed SPI compatible bus. This Click board™ is suitable to store drive profiles, configurations, and similar data, or for applications such as medical devices, industrial automation (for example, motor control and robotics), smart metering systems, and many others.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "SRAM 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "SRAM 3 Click" changes.

Do you want to report abuse regarding "SRAM 3 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


SRAM 3 Click

SRAM 3 Click is a compact add-on board that contains a serial non-volatile SRAM with a high storage capacity. This board features the ANV32AA1WDK66, a 1Mb serial SRAM with a non-volatile SONOS storage element included with each memory cell organized as 128k words of 8 bits each from Anvo-System Dresden. The serial SRAM provides fast access & cycle times, high data accuracy, ease of use, and unlimited read & write accessed by a high-speed SPI compatible bus. This Click board™ is suitable to store drive profiles, configurations, and similar data, or for applications such as medical devices, industrial automation (for example, motor control and robotics), smart metering systems, and many others.

sram_3_click.png

Click Product page


Click library

  • Author : Jelena Milosavljevic
  • Date : Jul 2021.
  • Type : SPI type

Software Support

We provide a library for the SRAM3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for SRAM3 Click driver.

Standard key functions :

  • sram3_cfg_setup Config Object Initialization function.

    void sram3_cfg_setup ( sram3_cfg_t *cfg );
  • sram3_init Initialization function.

    err_t sram3_init ( sram3_t *ctx, sram3_cfg_t *cfg );

Example key functions :

  • sram3_enable_write This function is for enabling writing to memory, status register or user serial.

    void sram3_enable_write( sram3_t *ctx );
  • sram3_disable_write Function for disabling writing to memory, status register or user serial.

    void sram3_disable_write( sram3_t *ctx );
  • sram3_protect_memory Function which secures part of memory from writing.

    void sram3_protect_memory( sram3_t *ctx, uint8_t protect_range );

Example Description

This is an example that shows the use of SRAM memory, using SRAM 3 Click. SRAM 3 Click is based on ANV32AA1W, and ANV32AA1W is a 1Mb serial SRAM with a non-volatile SONOS storage element included with each memory cell, organized as 128k words of 8 bits each. The devices are accessed by a high speed SPI-compatible bus. Specifically in this example, we used the high-speed SPI communication characteristics to write data to a specific registration address and read it.

The demo application is composed of two sections :

Application Init

Initialization SPI module, logger initalization and Click initialization.


void application_init ( void ) {
    log_cfg_t log_cfg;         /**< Logger config object. */
    sram3_cfg_t sram3_cfg;     /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    sram3_cfg_setup( &sram3_cfg );
    SRAM3_MAP_MIKROBUS( sram3_cfg, MIKROBUS_1 );
    err_t init_flag  = sram3_init( &sram3, &sram3_cfg );
    if ( SPI_MASTER_ERROR == init_flag ) {        
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    sram3_release_hold( &sram3 );
    Delay_ms ( 100 );
}

Application Task

First, we write the data to the registry address 0x00, and then we read the data from 0x00 address.


void application_task ( void ) {
    char buff_out[ 10 ] = { 0 };

    log_printf( &logger, "Writing [ %s ] to memory...\r\n", buf );
    sram3_enable_write( &sram3 );
    sram3_write( &sram3, 0x00, &buf[0], 6 );

    Delay_ms ( 100 );
    sram3_read( &sram3, 0x00, &buff_out[0], 6 );
    Delay_ms ( 100 );
    log_printf( &logger, "Data read from memory: %s \r\n", buff_out );
    log_printf( &logger, "---------------------------------------------\r\n" );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SRAM3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all MikroElektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

WiFi Plus click - UDP

1

This is project demonstrates how to send and receive UDP packages with WiFi Plus click.

[Learn More]

FTDI Click

0

FTDI Click is a compact add-on board that provides a high-speed USB to a serial interface converter. This board features the FT2232H, a 5th-generation high-speed USB 2.0 to a serial UART/I2C/SPI interface converter from FTDI. The entire USB protocol is handled on the chip (FTDI USB drivers required), making this board ideal for various USB applications. Besides a selectable interface and a standalone operation possibility, it also includes an EEPROM which contains the USB configuration descriptors for the FT2232H and one DA converter for additional reference in user-configurable applications.

[Learn More]

Buck 19 Click

0

Buck 19 Click is a compact add-on board that steps down the voltage from its input (supply) to its output (load). This board features the STPD01, a programmable synchronous buck converter from STMicroelectronics, providing power supply in applications following USB power delivery specifications. The STPD01 provides the desired voltage levels required by USB power delivery systems (USB PD 3.0) via I2C serial interface up to 60W output power, more precisely voltages in the range of 3V to 20V with a step of 20mV minimum, and currents from 0.1A to 3A with a minimum in steps of 50mA. It also offers advanced protection features such as overvoltage, overcurrent, and overtemperature detections.

[Learn More]