We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.10
mikroSDK Library: 2.0.0.0
Category: I2C
Downloaded: 175 times
Not followed.
License: MIT license
I2C Extend 2 Click is a compact add-on board suitable for I2C communication bus extension. This board features the PCA9615, a 2-channel multipoint differential I2C bus buffer with hot-swap logic from NXP Semiconductors. The PCA9615 converts the two default I2C signals into four differential signals, two for SCL and two for SDA.
Do you want to subscribe in order to receive notifications regarding "I2C Extend 2 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "I2C Extend 2 Click" changes.
Do you want to report abuse regarding "I2C Extend 2 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4715_i2c_extend_2_cli.zip [532.66KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
I2C Extend 2 Click is a compact add-on board suitable for I2C communication bus extension. This board features the PCA9615, a 2-channel multipoint differential I2C bus buffer with hot-swap logic from NXP Semiconductors. The PCA9615 converts the two default I2C signals into four differential signals, two for SCL and two for SDA.
We provide a library for the I2CExtend2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for I2CExtend2 Click driver.
i2cextend2_cfg_setup
Config Object Initialization function.
void i2cextend2_cfg_setup ( i2cextend2_cfg_t *cfg );
i2cextend2_init
Initialization function.
err_t i2cextend2_init ( i2cextend2_t *ctx, i2cextend2_cfg_t *cfg );
i2cextend2_rmt_write
Generic write data in Remote Mode function.
void i2cextend2_rmt_write ( i2cextend2_t *ctx, uint8_t reg, uint8_t tx_data );
i2cextend2_rmt_read
Generic read data in Remote Mode function.
uint8_t i2cextend2_rmt_read ( i2cextend2_t *ctx, uint8_t reg );
i2cextend2_enable
Enable extend function.
void i2cextend2_enable ( i2cextend2_t *ctx, uint8_t en_extend );
This is an example which demonstrates the use of I2C Extend 2 Click board.
The demo application is composed of two sections :
Initialization driver enables - I2C, check communication with device 6DOF IMU 11 Click connected to the I2C Extend 2 Click ( Remote Mode ), set default configuration and start measurement.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
i2cextend2_cfg_t i2cextend2_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
i2cextend2_cfg_setup( &i2cextend2_cfg );
I2CEXTEND2_MAP_MIKROBUS( i2cextend2_cfg, MIKROBUS_1 );
if ( I2C_MASTER_ERROR == i2cextend2_init( &i2cextend2, &i2cextend2_cfg ) )
{
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
i2cextend2_enable( &i2cextend2, I2CEXTEND2_EXTEND_ENABLE );
if ( C6DOFIMU11_WHO_AM_I_WIA_ID == i2cextend2_rmt_read( &i2cextend2, C6DOFIMU11_REG_WHO_AM_I ) )
{
log_printf( &logger, " SUCCESS \r\n" );
log_printf( &logger, "------------------------\r\n" );
}
else
{
log_printf( &logger, " ERROR \r\n" );
log_printf( &logger, " Reset the device \r\n" );
log_printf( &logger, "------------------------\r\n" );
for ( ; ; );
}
i2cextend2_rmt_write ( &i2cextend2, C6DOFIMU11_REG_CNTL2, C6DOFIMU11_CNTL2_TEMP_EN_STANDBY_MODE |
C6DOFIMU11_CNTL2_MAG_EN_STANDBY_MODE |
C6DOFIMU11_CNTL2_ACCEL_EN_STANDBY_MODE );
i2cextend2_rmt_write ( &i2cextend2, C6DOFIMU11_REG_INC3, C6DOFIMU11_INC3_IEL2_FIFO_TRIG |
C6DOFIMU11_INC3_IEL1_FIFO_TRIG );
i2cextend2_rmt_write ( &i2cextend2, C6DOFIMU11_REG_CNTL2, C6DOFIMU11_CNTL2_GSEL_8G |
C6DOFIMU11_CNTL2_RES_MAX2 |
C6DOFIMU11_CNTL2_MAG_EN_OPERATING_MODE |
C6DOFIMU11_CNTL2_ACCEL_EN_OPERATING_MODE );
Delay_ms ( 100 );
log_info( &logger, " Application Task " );
log_printf( &logger, "------------------------\r\n" );
}
In this example, we read Accel and Mag axis of the connected 6DOF IMU 11 Click boards to the I2C Extend 2 Click ( Remote Mode ) which is connected by a LAN cable to I2C Extend 2 Click ( Local Mode ). Results are being sent to the Usart Terminal where you can track their changes. All data logs write on USB uart changes for every 2 sec.
void application_task ( void )
{
log_printf( &logger, "\t Accel \t|\t Mag \r\n" );
log_printf( &logger, "------------------------------------------------\r\n" );
i2cextend2_6dofimu11_get_axis( &i2cextend2, C6DOFIMU11_REG_ACCEL_XOUT_L );
log_printf( &logger, "\t Accel X: %d\t|", axis );
i2cextend2_6dofimu11_get_axis( &i2cextend2, C6DOFIMU11_REG_MAG_XOUT_L );
log_printf( &logger, "\t Mag X: %d\r\n", axis );
i2cextend2_6dofimu11_get_axis( &i2cextend2, C6DOFIMU11_REG_ACCEL_YOUT_L );
log_printf( &logger, "\t Accel Y: %d\t|", axis );
i2cextend2_6dofimu11_get_axis( &i2cextend2, C6DOFIMU11_REG_MAG_YOUT_L );
log_printf( &logger, "\t Mag Y: %d\r\n", axis );
i2cextend2_6dofimu11_get_axis( &i2cextend2, C6DOFIMU11_REG_ACCEL_ZOUT_L );
log_printf( &logger, "\t Accel Z: %d\t|", axis );
i2cextend2_6dofimu11_get_axis( &i2cextend2, C6DOFIMU11_REG_MAG_ZOUT_L );
log_printf( &logger, "\t Mag Z: %d\r\n", axis );
log_printf( &logger, "------------------------------------------------\r\n" );
Delay_ms ( 1000 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.