We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.7
mikroSDK Library: 2.0.0.0
Category: Buck-Boost
Downloaded: 142 times
Not followed.
License: MIT license
BATT-MAN 2 Click is a compact add-on board representing an advanced battery and power management solution. This board features the MAX77654, a single inductor, multiple-output (SIMO) power management IC (PMIC) from Maxim Integrated, now part of Analog Devices. This I2C programmable board features a buck-boost regulator that provides three independently programmable power rails from a single inductor. Also, it has one 100mA LDO output with ripple rejection for audio and other noise-sensitive applications and a highly-configurable linear charger that supports a wide range of Li+ battery capacities featuring battery temperature monitoring for additional safety (JEITA).
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4729_batt_man_2_click.zip [668.22KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
BATT-MAN 2 Click is a compact add-on board representing an advanced battery and power management solution. This board features the MAX77654, a single inductor, multiple-output (SIMO) power management IC (PMIC) from Maxim Integrated, now part of Analog Devices. This I2C programmable board features a buck-boost regulator that provides three independently programmable power rails from a single inductor. Also, it has one 100mA LDO output with ripple rejection for audio and other noise-sensitive applications and a highly-configurable linear charger that supports a wide range of Li+ battery capacities featuring battery temperature monitoring for additional safety (JEITA).
We provide a library for the BATTMAN2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for BATTMAN2 Click driver.
battman2_cfg_setup
Config Object Initialization function.
void battman2_cfg_setup ( battman2_cfg_t *cfg );
battman2_init
Initialization function.
err_t battman2_init ( battman2_t *ctx, battman2_cfg_t *cfg );
battman2_default_cfg
Click Default Configuration function.
err_t battman2_default_cfg ( battman2_t *ctx );
battman2_set_charger_enable
BATT-MAN 2 set charger enable function.
err_t battman2_set_charger_enable ( battman2_t *ctx, uint8_t en_chg );
battman2_set_charger_cfg
BATT-MAN 2 set charger configuration function.
err_t battman2_set_charger_cfg ( battman2_t *ctx, battman2_chg_cnfg_t chg_cnfg );
battman2_get_charger_cfg
BATT-MAN 2 get charger configuration function.
err_t battman2_get_charger_cfg ( battman2_t *ctx, battman2_chg_cnfg_t *chg_cnfg );
This library contains API for BATT-MAN 2 Click driver. The library initializes and defines the I2C bus drivers to write and read data from registers. The library also includes a function for configuring appropriate charge current, charge voltage, prequalification voltage, Buck, Buck-Boost and Linear regulator configuration, etc.
The demo application is composed of two sections :
The initialization of the I2C module, log UART, and additional pins. After the driver inits and executes a default configuration, the app disables charging, sets charger configuration, enables charging, displays charger configuration, or sets Buck-Boost configuration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
battman2_cfg_t battman2_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
battman2_cfg_setup( &battman2_cfg );
BATTMAN2_MAP_MIKROBUS( battman2_cfg, MIKROBUS_1 );
err_t init_flag = battman2_init( &battman2, &battman2_cfg );
if ( I2C_MASTER_ERROR == init_flag )
{
log_error( &logger, " Application Init Error. " );
log_info( &logger, " Please, run program again... " );
for ( ; ; );
}
battman2_default_cfg ( &battman2 );
log_info( &logger, " Application Task " );
Delay_ms ( 100 );
battman2_set_charger_enable( &battman2, BATTMAN2_SET_CHARGER_DISABLE );
Delay_ms ( 100 );
#ifdef CHARGER
log_printf( &logger, "-----------------------------------------------\r\n" );
log_printf( &logger, " Example: CHARGER \r\n" );
chg_cfg.thm_hot = BATTMAN2_THM_HOT_411_mV;
chg_cfg.thm_warm = BATTMAN2_THM_WARM_511_mV;
chg_cfg.thm_cool = BATTMAN2_THM_COOL_747_mV;
chg_cfg.thm_cold = BATTMAN2_THM_COLD_867_mV;
chg_cfg.vchgin_min = 4.2;
chg_cfg.ichgin_lim = 95.0;
chg_cfg.i_pq = BATTMAN2_I_PQ_10_PERCENTAGE;
chg_cfg.chg_pq = 3.0;
chg_cfg.i_term = BATTMAN2_I_TERM_5_PERCENTAGE;
chg_cfg.t_topoff = BATTMAN2_T_TOPOFF_0_MIN;
chg_cfg.tj_reg = BATTMAN2_TJ_REG_60_C;
chg_cfg.vsys_reg = 4.100;
chg_cfg.chg_cc = 112.5;
chg_cfg.t_fast_chg = BATTMAN2_T_FAST_CHG_TIMER_7_HOURS;
chg_cfg.chg_cc_jeita = 15.0;
chg_cfg.thm_en = BATTMAN2_THM_EN_THERMISTOR_DISABLED;
chg_cfg.chg_cv = 3.775;
chg_cfg.usbs = BATTMAN2_USBS_CHGIN_IS_NOT_SUSPENDED;
chg_cfg.chg_cv_jeita = 3.6;
chg_cfg.imon_dischg_scale = BATTMAN2_IMON_DISCHG_SCALE_300_mA;
chg_cfg.mux_sel = BATTMAN2_MUX_SEL_MULTIPLEXER_DISABLED;
battman2_set_charger_cfg( &battman2, chg_cfg );
Delay_ms ( 100 );
battman2_set_charger_enable( &battman2, BATTMAN2_SET_CHARGER_ENABLE );
Delay_ms ( 100 );
#endif
#ifdef BUCKBOOST
log_printf( &logger, "-----------------------------------------------\r\n" );
log_printf( &logger, " Example: BUCK-BOOST \r\n" );
sbb_sel = BATTMAN2_SBB_CH_1;
sbb_cfg.output_vtg = 5.5;
sbb_cfg.op_mode = BATTMAN2_OP_MODE_BUCK_AND_BOOST;
sbb_cfg.current_limit = BATTMAN2_CURRENT_LIMIT_500_mA;
sbb_cfg.active_discharge_enable = BATTMAN2_ACTIVE_DISCHARGE_ENABLE;
sbb_cfg.enable_control = BATTMAN2_ENABLE_CONTROL_ON_IRRESPECTIVE_FPS;
sbb_cfg.ichgin_lim_def = BATTMAN2_ICHGIN_LIM_95_mA;
sbb_cfg.drv_sbb = BATTMAN2_DRV_SBB_FAST_TRANSITION_TIME;
battman2_set_sbb_config( &battman2, sbb_sel, sbb_cfg );
log_printf( &logger, "-----------------------------------------------\r\n" );
battman2_set_gpio_output( &battman2, BATTMAN2_SEL_LED_RED, BATTMAN2_PIN_STATE_OFF );
battman2_set_gpio_output( &battman2, BATTMAN2_SEL_LED_YELLOW, BATTMAN2_PIN_STATE_ON );
battman2_set_gpio_output( &battman2, BATTMAN2_SEL_LED_BLUE, BATTMAN2_PIN_STATE_OFF );
Delay_ms ( 1000 );
#endif
}
This is an example that shows the use of a BATT-MAN 2 Click board™. The choice of example profile tasks depends on uncommented code. Examples profile: CHARGER and BUCK-BOOST. In the CHARGER profile, while on the BATT-MAN 2 Click board™ the blue LED is the battery charging indicator, while the red LED indicates the cessation of battery charging. The yellow LED is an indicator of the BUCK-BOOST profile. Results are being sent to the USART terminal where the user can track their changes.
void application_task ( void )
{
#ifdef CHARGER
battman2_get_chg_status( &battman2, &chg_stat );
Delay_ms ( 10 );
display_charger_status( );
Delay_ms ( 1000 );
battman2_get_charger_cfg( &battman2, &chg_cfg );
log_printf( &logger, " Fast-charge constant current value : %.1f mA\r\n", chg_cfg.chg_cc );
log_printf( &logger, " Minimum CHGIN Regulation Voltage : %.3f V\r\n", chg_cfg.vchgin_min );
log_printf( &logger, " Battery Prequalific. Voltage Thld : %.3f V\r\n", chg_cfg.chg_pq );
log_printf( &logger, " System Voltage Regulation : %.3f V\r\n", chg_cfg.vsys_reg );
log_printf( &logger, " JEITA Ifast-chg-jeita : %.2f mA\r\n", chg_cfg.chg_cc_jeita );
log_printf( &logger, " Fast-charge battery Vreg : %.3f V\r\n", chg_cfg.chg_cv );
log_printf( &logger, " Vfast-chg-jeita : %.3f V\r\n", chg_cfg.chg_cv_jeita );
log_printf( &logger, "-----------------------------------------------\r\n" );
Delay_ms ( 1000 );
#endif
#ifdef BUCKBOOST
battman2_get_sbb_config( &battman2, sbb_sel, &sbb_cfg );
Delay_ms ( 10 );
display_sbb_status( );
Delay_ms ( 1000 );
#endif
}
display_charger_status
BATT-MAN 2 display charger status function.static void display_charger_status ( void );
display_sbb_status
BATT-MAN 2 display Buck-Boost status function.static void display_sbb_status ( void )
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.
Motion 3 Click is a Click board™ based on EKMC1606112, PIR motion sensor from Panasonic Corporation that's used as human motion detector. Also featured on Motion 3 Click bord is TLP241A photorelay from Toshiba that is used to provide a reinforced galvanic isolation for the external signals used to drive some external high power electronic equipment when motion is detected. It's allowing up to 40V between the SSR contacts in OFF state, and currents up to 2A while in ON state, thanks to a very low ON-state resistance. Motion 3 Click board™ is supported by a mikroSDK compliant library, which includes functions that simplify software development. This Click board™ comes as a fully tested product, ready to be used on a system equipped with the mikroBUS™ socket.
[Learn More]BarGraph 3 click is equipped with a five-segment LED bar graph display, notable for its strong and reliable illumination of the segments.
[Learn More]Analog MUX click is a Click board that switches one of the sixteen inputs to one output. It employs the CD74HC4067, a High-Speed CMOS Logic 16-Channel Analog Multiplexer/Demultiplexer, produced by Texas Instruments.
[Learn More]You have unsaved changes. If you choose to leave all changes will be discarded.
Do you want to subscribe in order to receive notifications regarding "BATT-MAN 2 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "BATT-MAN 2 Click" changes.
Do you want to report abuse regarding "BATT-MAN 2 Click".