TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141481 times)
  2. FAT32 Library (74339 times)
  3. Network Ethernet Library (58869 times)
  4. USB Device Library (48921 times)
  5. Network WiFi Library (44698 times)
  6. FT800 Library (44229 times)
  7. GSM click (30938 times)
  8. mikroSDK (29817 times)
  9. PID Library (27423 times)
  10. microSD click (27375 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Diff Press 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: Pressure

Downloaded: 163 times

Not followed.

License: MIT license  

Diff Press 3 Click is a compact add-on board that can measure differential pressure. It features the 2513130810401, a WSEN-PDUS differential pressure sensor from Würth Elektronik. The sensor is MEMS based and uses a piezo-resistive sensing principle. It is a fully calibrated pressure sensor with 15-bit digital and 11-bit analog outputs. In addition to pressure measurement, the 2513130810401 WSEN-PDUS sensor also has an embedded temperature sensor.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Diff Press 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Diff Press 3 Click" changes.

Do you want to report abuse regarding "Diff Press 3 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Diff Press 3 Click

Diff Press 3 Click is a compact add-on board that can measure differential pressure. It features the 2513130810401, a WSEN-PDUS differential pressure sensor from Würth Elektronik. The sensor is MEMS based and uses a piezo-resistive sensing principle. It is a fully calibrated pressure sensor with 15-bit digital and 11-bit analog outputs. In addition to pressure measurement, the 2513130810401 WSEN-PDUS sensor also has an embedded temperature sensor.

diffpress3_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : May 2023.
  • Type : ADC/I2C type

Software Support

We provide a library for the Diff Press 3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Diff Press 3 Click driver.

Standard key functions :

  • diffpress3_cfg_setup Config Object Initialization function.

    void diffpress3_cfg_setup ( diffpress3_cfg_t *cfg );
  • diffpress3_init Initialization function.

    err_t diffpress3_init ( diffpress3_t *ctx, diffpress3_cfg_t *cfg );

Example key functions :

  • diffpress3_get_pressure Diff Press 3 get pressure function.

    err_t diffpress3_get_pressure ( diffpress3_t *ctx, float *pressure );
  • diffpress3_get_temperature Diff Press 3 get temperature function.

    err_t diffpress3_get_temperature ( diffpress3_t *ctx, float *temperature );
  • diffpress3_read_raw_adc Diff Press 3 read raw ADC value function.

    err_t diffpress3_read_raw_adc ( diffpress3_t *ctx, uint16_t *raw_adc, diffpress3_d_sel_t data_sel );

Example Description

This library contains API for the Diff Press 3 Click driver. This demo application shows an example of differential pressure and temperature measurement.

The demo application is composed of two sections :

Application Init

Initialization of I2C and ADC module and log UART.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    diffpress3_cfg_t diffpress3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    diffpress3_cfg_setup( &diffpress3_cfg );
    DIFFPRESS3_MAP_MIKROBUS( diffpress3_cfg, MIKROBUS_1 );
    err_t init_flag = diffpress3_init( &diffpress3, &diffpress3_cfg );
    if ( ( ADC_ERROR == init_flag ) || ( I2C_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, "---------------------\r\n" );
    Delay_ms ( 100 );
}

Application Task

This example demonstrates the use of the Diff Press 3 Click board™. The demo application measures and display the Differential Pressure [kPa] and Temperature [degree Celsius] data. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void ) 
{
    float pressure, temperature;
    if ( DIFFPRESS3_OK == diffpress3_get_pressure( &diffpress3, &pressure ) )
    {
        log_printf( &logger, " Diff Pressure: %.3f [kPa]\r\n", pressure );
        Delay_ms ( 100 );
    }
    if ( DIFFPRESS3_OK == diffpress3_get_temperature( &diffpress3, &temperature ) )
    {
        log_printf( &logger, " Temperature: %.2f [C]\r\n", temperature );
        Delay_ms ( 100 );
    }
    log_printf( &logger, "---------------------\r\n" );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DiffPress3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

PROXIMITY 7 Click

0

Proximity 7 Click is an advanced proximity and ambient light sensing Click board™. It features the ADPS9930, a digital sensor IC equipped with two photodiodes (PD) and an IR LED, driven by a proprietary LED driver circuit. It allows an accurate proximity detection for a maximum distance of 100mm.

[Learn More]

RTC 21 Click

0

RTC 21 Click is a compact add-on board that accurately keeps the time of the day. This board features the PT7C4311, an I2C-configurable real-time clock module with programmable square-wave output from Diodes Incorporated. The PT7C4311 includes time and calendar functions providing various information such as hour, minute, second, day, date, month, year, and century. It operates in a 24-hour format indicator, has automatic leap year compensation, and low power consumption, allowing it to be used with a single button cell battery for an extended period.

[Learn More]

AD-SWIO 3 Click

0

AD-SWIO 3 Click is a compact add-on board representing a software configurable input/output solution for various purposes. This board features the AD74115H, a single-channel, software-configurable input and output with HART mode from Analog Devices. It provides many functionality for analog input, analog output, digital input, digital output, 2-wire, 3-wire, and 4-wire resistance temperature detector (RTD), and thermocouple measurement capability. The supply power and isolation part are managed by the ADP1034, a 3-channel isolated micropower management unit with seven digital isolators and programmable power control, also from Analog Devices.

[Learn More]