TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139845 times)
  2. FAT32 Library (72209 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Power MUX Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Power Switch

Downloaded: 125 times

Not followed.

License: MIT license  

Power MUX Click features power multiplexer that enables transition between two power supplies (such as a battery and a wall adapter), each operating at 2.8V to 5.5V and delivering up to 2A current depending on the package. This IC provides inrush current control and thermal protection to Power MUX Click, manual and auto-switching operating modes, cross-conduction blocking, and reverse-conduction blocking.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Power MUX Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Power MUX Click" changes.

Do you want to report abuse regarding "Power MUX Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Power MUX Click

Power MUX Click features power multiplexer that enables transition between two power supplies (such as a battery and a wall adapter), each operating at 2.8V to 5.5V and delivering up to 2A current depending on the package. This IC provides inrush current control and thermal protection to Power MUX Click, manual and auto-switching operating modes, cross-conduction blocking, and reverse-conduction blocking.

powermux_click.png

Click Product page


Click library

  • Author : Mikroe Team
  • Date : Sep 2021.
  • Type : GPIO type

Software Support

We provide a library for the PowerMUX Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for PowerMUX Click driver.

Standard key functions :

  • powermux_cfg_setup Config Object Initialization function.

    void powermux_cfg_setup ( powermux_cfg_t *cfg );
  • powermux_init Initialization function.

    err_t powermux_init ( powermux_t *ctx, powermux_cfg_t *cfg );
  • powermux_default_cfg Click Default Configuration function.

    void powermux_default_cfg ( powermux_t *ctx );

Example key functions :

  • powermux_int_pin_read Power MUX pin reading function.

    uint8_t powermux_int_pin_read ( powermux_t *ctx );
  • powermux_set_mode Power MUX mode set function.

    void powermux_set_mode ( powermux_t *ctx, uint8_t mode );

Example Description

This Click features power multiplexer that enables transition between two power supplies, each operating at 2.8V to 5.5V and delivering up to 2A current depending on the package.

The demo application is composed of two sections :

Application Init

Enables GPIO and starts write log.


void application_init ( void ) 
{
    log_cfg_t log_cfg;
    powermux_cfg_t powermux_cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    powermux_cfg_setup( &powermux_cfg );
    POWERMUX_MAP_MIKROBUS( powermux_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == powermux_init( &powermux, &powermux_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    powermux_default_cfg ( &powermux );

    log_info( &logger, " Application Task " );
}

Application Task

Changes power inputs every 3 seconds and displays the currently set mode on the USB UART.


void application_task ( void ) 
{
    log_printf( &logger, " OUTPUT : IN1\r\n\n" );
    powermux_set_mode( &powermux, POWERMUX_INPUT_CHANNEL_1_ON );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf( &logger, " OUTPUT : IN2\r\n\n" );
    powermux_set_mode( &powermux, POWERMUX_INPUT_CHANNEL_2_ON );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf( &logger, " OUTPUT : OFF\r\n\n" );
    powermux_set_mode( &powermux, POWERMUX_INPUT_CHANNEL_OFF );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf( &logger, " OUTPUT : AUTO\r\n\n" );
    powermux_set_mode( &powermux, POWERMUX_INPUT_CHANNEL_AUTO );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.PowerMUX

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

TouchKey Click

0

Touchkey Click has four capacitive pads powered by TTP224, a touchpad detector IC. Capacitive buttons like these can be toggled even when placed under a layer of glass or paper. The board outputs an interrupt signals for each pad: OUTA, OUTB, OUTC and OUTD (in place of default mikroBUS RST, AN, PWM and INT pins, respectively).

[Learn More]

ADC 5 click

0

ADC 5 click uses the ADC121S021 device from Texas Instruments - a low power, single channel 12-bit CMOS analog to digital converter, with a high-speed serial interface. This device uses the SAR algorithm for sampling the input voltage which, coupled with relatively high bit depth, gives a pretty accurate digital reconstruction of the input voltage.

[Learn More]

CO2 Click

0

CO2 Click is a compact add-on board that contains Sensirion miniature CO2 sensor. This board features the STC31, a gas concentration sensor designed for high-volume applications. The STC31 utilizes a revolutionized thermal conductivity measurement principle, which results in superior repeatability and long-term stability. The outstanding performance of these sensors is based on Sensirion’s patented CMOSens® sensor technology, which combines the sensor element, signal processing, and digital calibration on a small CMOS chip. It features a digital I2C interface, which makes it easy to connect directly to MCU. This Click board™ represents an ideal choice for health, environmental, industrial, residential monitoring of high CO2 concentrations and applications where reliability is crucial.

[Learn More]