TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142098 times)
  2. FAT32 Library (75363 times)
  3. Network Ethernet Library (59524 times)
  4. USB Device Library (49549 times)
  5. Network WiFi Library (45355 times)
  6. FT800 Library (44979 times)
  7. GSM click (31485 times)
  8. mikroSDK (30555 times)
  9. microSD click (27868 times)
  10. PID Library (27631 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

UVB Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 358 times

Not followed.

License: MIT license  

UVB Click is ultraviolet sensing board based on GUVB-C31SM sensor from GenUV, capable of measuring UV index between 0 to 16. UVB Click supports integrated functions of ultraviolet light sensors such that can be easily configured and used in user applications. Overexposure to UVB radiation not only can cause sunburn but also some forms of skin cancer, so knowing amount of UVB light can be quite important and this Click board™ is perfect solution for that task.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "UVB Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "UVB Click" changes.

Do you want to report abuse regarding "UVB Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


UVB Click

UVB Click is ultraviolet sensing board based on GUVB-C31SM sensor from GenUV, capable of measuring UV index between 0 to 16. UVB Click supports integrated functions of ultraviolet light sensors such that can be easily configured and used in user applications. Overexposure to UVB radiation not only can cause sunburn but also some forms of skin cancer, so knowing amount of UVB light can be quite important and this Click board™ is perfect solution for that task.

UVB_click.png

Click Product page


Click library

  • Author : Mikroe Team
  • Date : Sep 2021.
  • Type : I2C type

Software Support

We provide a library for the UVB Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for UVB Click driver.

Standard key functions :

  • uvb_cfg_setup Config Object Initialization function.

    void uvb_cfg_setup ( uvb_cfg_t *cfg );
  • uvb_init Initialization function.

    err_t uvb_init ( uvb_t *ctx, uvb_cfg_t *cfg );
  • uvb_default_cfg Click Default Configuration function.

    err_t uvb_default_cfg ( uvb_t *ctx );

Example key functions :

  • uvb_configuration Configuration register.

    void uvb_configuration ( uvb_t *ctx, uint8_t reg, uint8_t cfg );
  • uvb_read_byte Read one byte data from register.

    uint8_t uvb_read_byte ( uvb_t *ctx, uint8_t reg );
  • uvb_get_uv_data Get UVB data.

    uint16_t uvb_get_uv_data ( uvb_t *ctx );

Example Description

This Click is ultraviolet sensing board, capable of measuring UV index between 0 to 16. UVB Click supports integrated functions of ultraviolet light sensors.

The demo application is composed of two sections :

Application Init

Initialization driver init, check communication and configuration module for measurement.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    uvb_cfg_t uvb_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    uvb_cfg_setup( &uvb_cfg );
    UVB_MAP_MIKROBUS( uvb_cfg, MIKROBUS_1 );
    err_t init_flag = uvb_init( &uvb, &uvb_cfg );
    if ( I2C_MASTER_ERROR == init_flag ) {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    uvb_default_cfg ( &uvb );
    log_info( &logger, " Application Task " );
    log_printf( &logger, "--------------------------\r\n" );
}

Application Task

Reads UVB data and logs to the USBUART every 1500ms.


void application_task ( void ) 
{
    uvb_data = uvb_get_uv_data( &uvb );

    log_printf( &logger, ">> UVB data: %d\r\n", uvb_data );

    log_printf( &logger, "--------------------------\r\n" );
    Delay_ms ( 1000 );
    Delay_ms ( 500 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.UVB

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Accel 20 Click

0

Accel 20 Click is a compact add-on board that contains an acceleration sensor. This board features the KX134-1211, a digital output 3-axis accelerometer optimized for machine condition monitoring from Rohm Semiconductor. It allows selectable full-scale acceleration measurements in ranges of ±8g, ±16g, ±32g, or ±64g in three axes with a configurable host interface that supports both SPI and I2C serial communication. It also features an Advanced Data Path (ADP) technology which allows noise filtering and sensor signal processing, usually carried out by the MCU, to be performed by the accelerometer. They contribute to reducing MCU load and power consumption together with improved application performance.

[Learn More]

MCP2517FD click

6

MCP2517FD Click is a compact add-on board representing a complete CAN solution used as a control node in a CAN network. This board features the MCP2517FD and ATA6563, an external CAN FD controller with an SPI interface, and a high-speed CAN transceiver from Microchip. The ATA6563, a low-level physical layer IC (PHY), provides a physical connection with the CAN bus itself, while the CAN controller MCP2517FD represents an interface between the MCU and the PHY. It features three operating modes with dedicated fail-safe features, remote wake-up via CAN, and ideally passive behavior when powered off on the CAN bus. This Click board™ is suitable for developing a wide range of automotive diagnostic applications, even on MCUs that don’t support CAN interface.

[Learn More]

Environment 3 Click

0

Environment 3 Click is a compact add-on board that contains a four-in-one environmental measurement solution. This board features BME688, a first gas sensor with Artificial Intelligence (AI), and integrated high-linearity/high-accuracy pressure, humidity, and temperature sensors from Bosch Sensortech. The BME688 can detect Volatile Organic Compounds (VOCs), Volatile Sulfur Compounds (VSCs), and other gases such as carbon monoxide and hydrogen in part per billion (ppb) range. It provides absolute temperature accuracy, typical of ±1°C, and best performance when operated within the pressure, temperature, and humidity range of 300-110hPa, 0-65°C, and 10-90%RH.

[Learn More]