TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142028 times)
  2. FAT32 Library (75256 times)
  3. Network Ethernet Library (59475 times)
  4. USB Device Library (49496 times)
  5. Network WiFi Library (45271 times)
  6. FT800 Library (44885 times)
  7. GSM click (31418 times)
  8. mikroSDK (30403 times)
  9. microSD click (27781 times)
  10. PID Library (27615 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DC Motor 20 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 286 times

Not followed.

License: MIT license  

DC Motor 20 Click is a compact add-on board that contains a brushed DC motor driver. This board features the TC78H651AFNG, a dual H-bridge driver for one or two DC brushed motors, which incorporates DMOS with low ON resistance in output transistors from Toshiba Semiconductor.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DC Motor 20 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DC Motor 20 Click" changes.

Do you want to report abuse regarding "DC Motor 20 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


DC Motor 20 Click

DC Motor 20 Click is a compact add-on board that contains a brushed DC motor driver. This board features the TC78H651AFNG, a dual H-bridge driver for one or two DC brushed motors, which incorporates DMOS with low ON resistance in output transistors from Toshiba Semiconductor.

dcmotor20_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Oct 2021.
  • Type : GPIO type

Software Support

We provide a library for the DCMotor20 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for DCMotor20 Click driver.

Standard key functions :

  • dcmotor20_cfg_setup Config Object Initialization function.

    void dcmotor20_cfg_setup ( dcmotor20_cfg_t *cfg );
  • dcmotor20_init Initialization function.

    err_t dcmotor20_init ( dcmotor20_t *ctx, dcmotor20_cfg_t *cfg );

Example key functions :

  • dcmotor20_drive_motor This function drives the motor for a certian time specified by time_ms at the desired speed.

    err_t dcmotor20_drive_motor ( dcmotor20_t *ctx, uint8_t speed, uint32_t time_ms );
  • dcmotor20_set_channel_mode This function sets the active channel and mode which will be used by the dcmotor20_drive_motor function.

    err_t dcmotor20_set_channel_mode ( dcmotor20_t *ctx, uint8_t channel, uint8_t mode );
  • dcmotor20_set_standby_mode This function sets the chip to the standby mode which affects both channels.

    void dcmotor20_set_standby_mode ( dcmotor20_t *ctx );

Example Description

This example demonstrates the use of DC Motor 20 Click board by driving the motors in both direction in the span of 14 seconds.

The demo application is composed of two sections :

Application Init

Initializes the driver and sets the Click board to standby mode.


void application_init ( void )
{
    log_cfg_t log_cfg;              /**< Logger config object. */
    dcmotor20_cfg_t dcmotor20_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    dcmotor20_cfg_setup( &dcmotor20_cfg );
    DCMOTOR20_MAP_MIKROBUS( dcmotor20_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == dcmotor20_init( &dcmotor20, &dcmotor20_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    dcmotor20_set_standby_mode ( &dcmotor20 );
    log_info( &logger, " Application Task " );
}

Application Task

Drives the motors in the forward direction for 5 seconds, and then switches the direction, with a brake time of 2 seconds between switching the direction. Each step will be logged on the USB UART where you can track the program flow.


void application_task ( void )
{
    log_printf ( &logger, " Driving motors forward...\r\n" );
    dcmotor20_set_channel_mode ( &dcmotor20, DCMOTOR20_CHANNEL_1 | DCMOTOR20_CHANNEL_2, DCMOTOR20_MODE_FORWARD );
    dcmotor20_drive_motor ( &dcmotor20, DCMOTOR20_SPEED_DEFAULT, 5000 );
    log_printf ( &logger, " Pull brake!\r\n" );
    dcmotor20_set_standby_mode ( &dcmotor20 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf ( &logger, " Driving motors in reverse...\r\n" );
    dcmotor20_set_channel_mode ( &dcmotor20, DCMOTOR20_CHANNEL_1 | DCMOTOR20_CHANNEL_2, DCMOTOR20_MODE_REVERSE );
    dcmotor20_drive_motor ( &dcmotor20, DCMOTOR20_SPEED_DEFAULT, 5000 );
    log_printf ( &logger, " Pull brake!\r\n\n" );
    dcmotor20_set_standby_mode ( &dcmotor20 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DCMotor20

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

DAC 2 Click

5

DAC 2 click carries LTC2601CDD, a 16-bit digital-to-analog converter, along with voltage output screw terminals.The click board communicates with the target MCU through the mikroBUS SPI interface (MISO, MOSI pins) with clock rates up to 50MHz.

[Learn More]

MCP1664 click

1

MCP1664 click contains 4 high-power white LEDs. It carries the MCP1664, a high-voltage step-up LED driver from Microchip. MCP1664 click is designed to run on either 3.3V or 5V power supply. It communicates with the target board microcontroller over the PWM pin on the mikroBUS line.

[Learn More]

Pot 3 Click

0

POT 3 Click is a Click board� with the accurate selectable reference voltage output. By employing a high-quality 11mm, metal shaft potentiometer, this Click board� can provide very accurate voltage output.

[Learn More]