TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139845 times)
  2. FAT32 Library (72209 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DC Motor 20 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 139 times

Not followed.

License: MIT license  

DC Motor 20 Click is a compact add-on board that contains a brushed DC motor driver. This board features the TC78H651AFNG, a dual H-bridge driver for one or two DC brushed motors, which incorporates DMOS with low ON resistance in output transistors from Toshiba Semiconductor.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DC Motor 20 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DC Motor 20 Click" changes.

Do you want to report abuse regarding "DC Motor 20 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


DC Motor 20 Click

DC Motor 20 Click is a compact add-on board that contains a brushed DC motor driver. This board features the TC78H651AFNG, a dual H-bridge driver for one or two DC brushed motors, which incorporates DMOS with low ON resistance in output transistors from Toshiba Semiconductor.

dcmotor20_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Oct 2021.
  • Type : GPIO type

Software Support

We provide a library for the DCMotor20 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for DCMotor20 Click driver.

Standard key functions :

  • dcmotor20_cfg_setup Config Object Initialization function.

    void dcmotor20_cfg_setup ( dcmotor20_cfg_t *cfg );
  • dcmotor20_init Initialization function.

    err_t dcmotor20_init ( dcmotor20_t *ctx, dcmotor20_cfg_t *cfg );

Example key functions :

  • dcmotor20_drive_motor This function drives the motor for a certian time specified by time_ms at the desired speed.

    err_t dcmotor20_drive_motor ( dcmotor20_t *ctx, uint8_t speed, uint32_t time_ms );
  • dcmotor20_set_channel_mode This function sets the active channel and mode which will be used by the dcmotor20_drive_motor function.

    err_t dcmotor20_set_channel_mode ( dcmotor20_t *ctx, uint8_t channel, uint8_t mode );
  • dcmotor20_set_standby_mode This function sets the chip to the standby mode which affects both channels.

    void dcmotor20_set_standby_mode ( dcmotor20_t *ctx );

Example Description

This example demonstrates the use of DC Motor 20 Click board by driving the motors in both direction in the span of 14 seconds.

The demo application is composed of two sections :

Application Init

Initializes the driver and sets the Click board to standby mode.


void application_init ( void )
{
    log_cfg_t log_cfg;              /**< Logger config object. */
    dcmotor20_cfg_t dcmotor20_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    dcmotor20_cfg_setup( &dcmotor20_cfg );
    DCMOTOR20_MAP_MIKROBUS( dcmotor20_cfg, MIKROBUS_1 );
    if ( DIGITAL_OUT_UNSUPPORTED_PIN == dcmotor20_init( &dcmotor20, &dcmotor20_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    dcmotor20_set_standby_mode ( &dcmotor20 );
    log_info( &logger, " Application Task " );
}

Application Task

Drives the motors in the forward direction for 5 seconds, and then switches the direction, with a brake time of 2 seconds between switching the direction. Each step will be logged on the USB UART where you can track the program flow.


void application_task ( void )
{
    log_printf ( &logger, " Driving motors forward...\r\n" );
    dcmotor20_set_channel_mode ( &dcmotor20, DCMOTOR20_CHANNEL_1 | DCMOTOR20_CHANNEL_2, DCMOTOR20_MODE_FORWARD );
    dcmotor20_drive_motor ( &dcmotor20, DCMOTOR20_SPEED_DEFAULT, 5000 );
    log_printf ( &logger, " Pull brake!\r\n" );
    dcmotor20_set_standby_mode ( &dcmotor20 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    log_printf ( &logger, " Driving motors in reverse...\r\n" );
    dcmotor20_set_channel_mode ( &dcmotor20, DCMOTOR20_CHANNEL_1 | DCMOTOR20_CHANNEL_2, DCMOTOR20_MODE_REVERSE );
    dcmotor20_drive_motor ( &dcmotor20, DCMOTOR20_SPEED_DEFAULT, 5000 );
    log_printf ( &logger, " Pull brake!\r\n\n" );
    dcmotor20_set_standby_mode ( &dcmotor20 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DCMotor20

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

ccRF 3 click

7

ccRF 3 click carries the CC1120 high-performance RF transceiver for narrowband systems from Texas Instruments. The clicks will enable you to add a low-power consumption radio transceiver at 433 MHz frequency. ccRF 3 click is designed to run on a 3.3V power supply. It communicates with the target microcontroller over SPI interface.

[Learn More]

Accel 21 Click

0

Accel 21 Click is a compact add-on board that contains an acceleration sensor. This board features the MIS2DH, a high-performance three-axis accelerometer from STMicroelectronics. The MIS2DH allows selectable full-scale acceleration measurements in ranges of ±2g, ±4g, ±8g, or ±16g in three axes with a configurable host interface that supports both SPI and I2C serial communication. It also supports high-resolution and low-power operating modes, allowing maximum flexibility to meet various use case needs.

[Learn More]

dsPICPRO4

0

Examples for dsPICPRO4 development system

[Learn More]