TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (400 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (128 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140746 times)
  2. FAT32 Library (73303 times)
  3. Network Ethernet Library (58176 times)
  4. USB Device Library (48369 times)
  5. Network WiFi Library (43949 times)
  6. FT800 Library (43503 times)
  7. GSM click (30436 times)
  8. mikroSDK (29133 times)
  9. PID Library (27148 times)
  10. microSD click (26822 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Flash 11 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: FLASH

Downloaded: 147 times

Not followed.

License: MIT license  

Flash 11 Click is a compact add-on board representing a highly reliable memory solution. This board features the AT25SF321B, a 32-Mbit SPI serial Flash memory with Dual I/O and Quad I/O support from Dialog Semiconductor. It is designed for applications in which the program code is shadowed from Flash memory into embedded or external RAM for execution and where small amounts of data are stored and updated locally in the Flash memory. It has a flexible and optimized erase architecture for code and data storage applications, non-volatile protection, three specialized protected programmable 256-byte OTP security registers, and a 64-bit factory programmable UID register.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Flash 11 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Flash 11 Click" changes.

Do you want to report abuse regarding "Flash 11 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Flash 11 Click

Flash 11 Click is a compact add-on board representing a highly reliable memory solution. This board features the AT25SF321B, a 32-Mbit SPI serial Flash memory with Dual I/O and Quad I/O support from Dialog Semiconductor. It is designed for applications in which the program code is shadowed from Flash memory into embedded or external RAM for execution and where small amounts of data are stored and updated locally in the Flash memory. It has a flexible and optimized erase architecture for code and data storage applications, non-volatile protection, three specialized protected programmable 256-byte OTP security registers, and a 64-bit factory programmable UID register.

flash11_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : May 2023.
  • Type : SPI type

Software Support

We provide a library for the Flash 11 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Flash 11 Click driver.

Standard key functions :

  • flash11_cfg_setup Config Object Initialization function.

    void flash11_cfg_setup ( flash11_cfg_t *cfg );
  • flash11_init Initialization function.

    err_t flash11_init ( flash11_t *ctx, flash11_cfg_t *cfg );
  • flash11_default_cfg Click Default Configuration function.

    err_t flash11_default_cfg ( flash11_t *ctx );

Example key functions :

  • flash11_memory_write Flash 11 memory write function.

    err_t flash11_memory_write ( flash11_t *ctx, uint32_t mem_addr, uint8_t *data_in, uint32_t len );
  • flash11_memory_read Flash 11 memory read function.

    err_t flash11_memory_read ( flash11_t *ctx, uint32_t mem_addr, uint8_t *data_out, uint32_t len );
  • flash11_block_erase Flash 11 block erase function.

    err_t flash11_block_erase ( flash11_t *ctx, uint8_t cmd_block_erase, uint32_t mem_addr );

Example Description

This example demonstrates the use of Flash 11 Click board The demo app writes specified data to the memory and reads it back.

The demo application is composed of two sections :

Application Init

The initialization of SPI module, log UART, and additional pins. After the driver init, the app executes a default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    flash11_cfg_t flash11_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    flash11_cfg_setup( &flash11_cfg );
    FLASH11_MAP_MIKROBUS( flash11_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == flash11_init( &flash11, &flash11_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( FLASH11_ERROR == flash11_default_cfg ( &flash11 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, " ----------------------------\r\n" );
    Delay_ms ( 100 );
}

Application Task

This example demonstrates the use of the Flash 11 Click board™. The demo application writes a desired number of bytes to the memory and then verifies if it is written correctly by reading from the same memory location and displaying the memory content. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void )
{
    uint8_t data_buf[ 128 ] = { 0 };
    log_printf( &logger, " Memory address: 0x%.6LX\r\n", ( uint32_t ) STARTING_ADDRESS_1 );
    if ( FLASH11_OK == flash11_block_erase( &flash11, FLASH11_CMD_BLOCK_ERASE_4KB, STARTING_ADDRESS_1 ) )
    {
        log_printf( &logger, " Erase memory block (4KB)\r\n" );
    }

    memcpy( data_buf, DEMO_TEXT_MESSAGE_1, strlen( DEMO_TEXT_MESSAGE_1 ) );
    if ( FLASH11_OK == flash11_memory_write( &flash11, STARTING_ADDRESS_1, data_buf, sizeof( data_buf ) ) )
    {
       log_printf( &logger, " Write data: %s\r\n", data_buf );
        Delay_ms ( 100 );
    }

    memset( data_buf, 0, sizeof( data_buf ) );
    if ( FLASH11_OK == flash11_memory_read( &flash11, STARTING_ADDRESS_1, data_buf, sizeof( data_buf ) ) )
    {
        log_printf( &logger, " Read data: %s\r\n", data_buf );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
    log_printf( &logger, " ----------------------------\r\n" );

    log_printf( &logger, " Memory address: 0x%.6LX\r\n", ( uint32_t ) STARTING_ADDRESS_2 );
    if ( FLASH11_OK == flash11_block_erase( &flash11, FLASH11_CMD_BLOCK_ERASE_4KB, STARTING_ADDRESS_2 ) )
    {
        log_printf( &logger, " Erase memory block (4KB)\r\n" );
    }
    memcpy( data_buf, DEMO_TEXT_MESSAGE_2, strlen( DEMO_TEXT_MESSAGE_2 ) );
    if ( FLASH11_OK == flash11_memory_write( &flash11, STARTING_ADDRESS_2, data_buf, sizeof( data_buf ) ) )
    {
        log_printf( &logger, " Write data: %s\r\n", data_buf );
        Delay_ms ( 100 );
    }

    memset( data_buf, 0, sizeof( data_buf ) );
    if ( FLASH11_OK == flash11_memory_read( &flash11, STARTING_ADDRESS_2, data_buf, sizeof( data_buf ) ) )
    {
        log_printf( &logger, " Read data: %s\r\n", data_buf );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
    log_printf ( &logger, " ----------------------------\r\n" );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Flash11

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Matrix G click

5

Matrix G click is a mikroBUS add-on board with two 5x7 matrices driven by two MAX7219 8-bit LED Display Drivers.

[Learn More]

PROFET 2 7A Click

0

PROFET 2 Click is a compact add-on board that contains a smart high-side power switch. This board features the BTS70082EPAXUMA1, a dual-channel, high-side power switch with embedded protection and diagnosis feature from Infineon Technologies.

[Learn More]

LTE IoT 2 click

5

LTE IoT 2 click is a Click board that allows connection to the LTE networks, featuring Quectel BG96 LTE module, which offers two LTE technologies aimed at Machine to Machine communication (M2M) and Internet of Things (IoT).

[Learn More]