TOP Contributors

  1. MIKROE (2751 codes)
  2. Alcides Ramos (372 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139058 times)
  2. FAT32 Library (71588 times)
  3. Network Ethernet Library (56988 times)
  4. USB Device Library (47330 times)
  5. Network WiFi Library (43006 times)
  6. FT800 Library (42297 times)
  7. GSM click (29760 times)
  8. mikroSDK (27874 times)
  9. PID Library (26858 times)
  10. microSD click (26129 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

PROFET 15A Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.9

mikroSDK Library: 2.0.0.0

Category: Power Switch

Downloaded: 136 times

Not followed.

License: MIT license  

PROFET Click is a compact add-on board that contains a smart high-side power switch. This board features the BTS70041EPPXUMA1, a single-channel, high-side power switch with embedded protection and diagnosis feature from Infineon Technologies. This switch has a driving capability suitable for 15A loads featuring a ReverSave™, which causes the power transistor to switch on in case of reverse polarity. Besides its protection features, it also has pin-configurable diagnosis features such as proportional load current sense, open Load in ON and OFF state, and short circuit to ground and battery.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "PROFET 15A Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "PROFET 15A Click" changes.

Do you want to report abuse regarding "PROFET 15A Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


PROFET 15A Click

PROFET Click is a compact add-on board that contains a smart high-side power switch. This board features the BTS70041EPPXUMA1, a single-channel, high-side power switch with embedded protection and diagnosis feature from Infineon Technologies. This switch has a driving capability suitable for 15A loads featuring a ReverSave™, which causes the power transistor to switch on in case of reverse polarity. Besides its protection features, it also has pin-configurable diagnosis features such as proportional load current sense, open Load in ON and OFF state, and short circuit to ground and battery.

profet15a_click.png

Click Product page


Click library

  • Author : Luka Filipovic
  • Date : Jun 2021.
  • Type : ADC type

Software Support

We provide a library for the PROFET 15A Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for PROFET 15A Click driver.

Standard key functions :

  • profet15a_cfg_setup Config Object Initialization function.

    void profet15a_cfg_setup ( profet15a_cfg_t *cfg );
  • profet15a_init Initialization function.

    err_t profet15a_init ( profet15a_t *ctx, profet15a_cfg_t *cfg );

Example key functions :

  • profet15a_read_an_pin_voltage PROFET 15A read AN pin voltage level function.

    err_t profet15a_read_an_pin_voltage ( profet15a_t *ctx, float *data_out );
  • profet15a_set_mode PROFET 15A set mode.

    err_t profet15a_set_mode ( profet15a_t *ctx, uint8_t mode );

Example Description

This example showcases the ability of the PROFET 15A Click board. It configures Host MCU for communication and then enables and disables output channel. Besides that, it reads the voltage of IS pin and calculates current on output.

The demo application is composed of two sections :

Application Init

Initialization of the communication modules(ADC and UART) and additional pins for controlling the device.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    profet15a_cfg_t profet15a_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    profet15a_cfg_setup( &profet15a_cfg );
    PROFET15A_MAP_MIKROBUS( profet15a_cfg, MIKROBUS_1 );
    if ( profet15a_init( &profet15a, &profet15a_cfg ) == ADC_ERROR )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }

    log_info( &logger, " Application Task " );

    profet15a_set_mode( &profet15a, PROFET15A_DIAGNOSTIC_ON );
    Delay_ms ( 1000 );
}

Application Task

On every iteration of the task device switches between DIAGNOSTIC and OFF mode while it reads the voltage of IS pin and with that calculates current on output.


void application_task ( void )
{
    static uint8_t mode = PROFET15A_DIAGNOSTIC_ON;
    float profet15a_an_voltage = 0;

    profet15a_set_mode( &profet15a, mode );

    if ( PROFET15A_DIAGNOSTIC_ON == profet15a.mode )
    {
        mode = PROFET15A_MODE_OFF;
        log_printf( &logger, " > Output ON diagnostic mode\r\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
    else
    {
        mode = PROFET15A_DIAGNOSTIC_ON;
        log_printf( &logger, " > Output OFF\r\n" );
    }

    if ( profet15a_read_an_pin_voltage ( &profet15a, &profet15a_an_voltage ) != ADC_ERROR )
    {
        log_printf( &logger, " > IS Voltage \t~ %.3f[V]\r\n", profet15a_an_voltage );

        float current = profet15a_an_voltage * profet15a.kilis / profet15a.rsens;
        log_printf( &logger, " > OUT Current \t~ %.3f[A]\r\n", current );
    }  

    log_printf( &logger, "*******************************************\r\n" );

    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Note

Formula for calculating current on load: I_load = voltage(IS) x kILIS / 1.2 kΩ

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.PROFET15A

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

USB-C Sink click

5

USB-C Sink Click is a compact add-on board that contains a standalone autonomous USB power delivery controller. This board features the STUSB4500, a USB-C sink-only controller compatible with Power-Delivery (PD) from STMicroelectronics.

[Learn More]

Boost-INV 3 Click

0

Boost-INV 3 Click is a compact add-on board designed to supply positive/negative-driven applications. This board features the TPS65132, a dual-output power supply from Texas Instruments. The TPS65132 uses a single inductor scheme for both outputs to provide the user with the smallest solution size and high efficiency.

[Learn More]

BATT Boost Click

0

BATT Boost Click is a compact add-on board that expands a coin battery cell's lifetime and current capability, like the CR2032 and lithium thionyl batteries. This board features the NBM5100A, a coin-cell battery life booster with adaptive power optimization from Nexperia. It is a battery energy management device designed to maximize usable capacity from non-rechargeable, primary batteries when used in low-voltage, low-power applications requiring burst current loads. The devices overcome voltage drop and battery life limitations associated with extracting high pulse currents.

[Learn More]