TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (398 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (127 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140722 times)
  2. FAT32 Library (73208 times)
  3. Network Ethernet Library (58144 times)
  4. USB Device Library (48293 times)
  5. Network WiFi Library (43929 times)
  6. FT800 Library (43427 times)
  7. GSM click (30419 times)
  8. mikroSDK (29123 times)
  9. PID Library (27132 times)
  10. microSD click (26779 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

RTC 18 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.9

mikroSDK Library: 2.0.0.0

Category: RTC

Downloaded: 234 times

Not followed.

License: MIT license  

RTC 18 Click is a compact add-on board that accurately keeps the time of a day. This board features the RV-3032-C7, an I2C-configurable real-time clock module that incorporates an integrated CMOS circuit and an XTAL from Micro Crystal AG. The RV-3032-C7 is a temperature compensated RTC with premium accuracy (0.22 sec/day) and extremely low power consumption, allowing it to be used with a single button cell battery for an extended period. It can measure temperature with a typical accuracy of ±1°C and a resolution of 0.0625°C/step with a programmable alarm on top and bottom temperature limits. It features standard RTC functions with automatic leap year correction, and standard interrupt for Periodic Countdown Timer and Periodic Time Update (seconds, minutes), date/hour/minute alarm, and an external event.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "RTC 18 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "RTC 18 Click" changes.

Do you want to report abuse regarding "RTC 18 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


RTC 18 Click

RTC 18 Click is a compact add-on board that accurately keeps the time of a day. This board features the RV-3032-C7, an I2C-configurable real-time clock module that incorporates an integrated CMOS circuit and an XTAL from Micro Crystal AG. The RV-3032-C7 is a temperature compensated RTC with premium accuracy (0.22 sec/day) and extremely low power consumption, allowing it to be used with a single button cell battery for an extended period. It can measure temperature with a typical accuracy of ±1°C and a resolution of 0.0625°C/step with a programmable alarm on top and bottom temperature limits. It features standard RTC functions with automatic leap year correction, and standard interrupt for Periodic Countdown Timer and Periodic Time Update (seconds, minutes), date/hour/minute alarm, and an external event.

rtc18_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : May 2022.
  • Type : I2C type

Software Support

We provide a library for the RTC 18 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for RTC 18 Click driver.

Standard key functions :

  • rtc18_cfg_setup Config Object Initialization function.

    void rtc18_cfg_setup ( rtc18_cfg_t *cfg );
  • rtc18_init Initialization function.

    err_t rtc18_init ( rtc18_t *ctx, rtc18_cfg_t *cfg );
  • rtc18_default_cfg Click Default Configuration function.

    err_t rtc18_default_cfg ( rtc18_t *ctx );

Example key functions :

  • rtc18_read_time This function reads the current time values - second, minute and hour.

    err_t rtc18_read_time ( rtc18_t *ctx, rtc18_time_t *time );
  • rtc18_read_date This function reads the current date values - day of week, day, month and year.

    err_t rtc18_read_date ( rtc18_t *ctx, rtc18_date_t *date );
  • rtc18_read_temperature This function reads temperature measurements in Celsius.

    err_t rtc18_read_temperature ( rtc18_t *ctx, float *temperature );

Example Description

This example demonstrates the use of RTC 18 Click board by reading and displaying the time and date values as well as the temperature measurements in Celsius.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger and performs the Click default configuration which enables the periodic interrupt on seconds count-up, and sets the starting time and date.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    rtc18_cfg_t rtc18_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    rtc18_cfg_setup( &rtc18_cfg );
    RTC18_MAP_MIKROBUS( rtc18_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == rtc18_init( &rtc18, &rtc18_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( RTC18_ERROR == rtc18_default_cfg ( &rtc18 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    time.hour = 23;
    time.minute = 59;
    time.second = 50;
    if ( RTC18_OK == rtc18_set_time ( &rtc18, &time ) )
    {
        log_printf( &logger, " Set time: %.2u:%.2u:%.2u\r\n", 
                    ( uint16_t ) time.hour, ( uint16_t ) time.minute, ( uint16_t ) time.second );
    }
    date.day_of_week = RTC18_SATURDAY;
    date.day = 31;
    date.month = 12;
    date.year = 22;
    if ( RTC18_OK == rtc18_set_date ( &rtc18, &date ) )
    {
        log_printf( &logger, " Set date: %s, %.2u.%.2u.20%.2u.\r\n", 
                    rtc18_get_day_of_week_name ( date.day_of_week ),
                    ( uint16_t ) date.day, ( uint16_t ) date.month, ( uint16_t ) date.year );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Waits for the second count-up interrupt and then reads and displays on the USB UART the current time and date values as well as the temperature measurements in Celsius.

void application_task ( void )
{
    float temperature;

    // Wait for a second count-up interrupt
    while ( rtc18_get_int_pin ( &rtc18 ) );

    Delay_ms ( 10 );
    rtc18_clear_periodic_interrupt ( &rtc18 );

    if ( RTC18_OK == rtc18_read_time ( &rtc18, &time ) )
    {
        log_printf( &logger, " Time: %.2u:%.2u:%.2u\r\n", 
                    ( uint16_t ) time.hour, ( uint16_t ) time.minute, ( uint16_t ) time.second );
    }
    if ( RTC18_OK == rtc18_read_date ( &rtc18, &date ) )
    {
        log_printf( &logger, " Date: %s, %.2u.%.2u.20%.2u.\r\n", 
                    rtc18_get_day_of_week_name ( date.day_of_week ),
                    ( uint16_t ) date.day, ( uint16_t ) date.month, ( uint16_t ) date.year );
    }
    if ( RTC18_OK == rtc18_read_temperature ( &rtc18, &temperature ) )
    {
        log_printf( &logger, " Temperature: %.2f C\r\n\n", temperature );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.RTC18

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Ambient 15 Click

0

Ambient 15 Click is a compact add-on board used to measure the amount of the present ambient light. This board features the TSL2584TSV, a very-high sensitivity light-to-digital converter with an I2C interface that transforms light intensity into a digital output signal from AMS-AG. The TSL2584TSV’s near-photopic response produces a highly accurate lux measurement up to 33klx even when mounted behind dark glass. Filtering out unwanted IR light enables the sensor to measure the ambient light more accurately, thus producing a near-photopic response.

[Learn More]

Expand 3 Click

0

Expand 3 Click is a compact add-on board providing general-purpose I/O expansion. This board features the DS2408, an 8-channel programmable I/O expander from Analog Devices. The DS2408 has a factory-lasered 64-bit registration number, enabling multiple Expand 3 Click boards™ to be connected on the same data line, communicating with the host MCU through a standard Dallas Semiconductor 1-Wire interface (15.3kbps or 100kbps). PIO outputs are configured as open-drain and provide a maximum on-resistance of 100Ω.

[Learn More]

ADC 5 click

0

ADC 5 click uses the ADC121S021 device from Texas Instruments - a low power, single channel 12-bit CMOS analog to digital converter, with a high-speed serial interface. This device uses the SAR algorithm for sampling the input voltage which, coupled with relatively high bit depth, gives a pretty accurate digital reconstruction of the input voltage.

[Learn More]