We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.11
mikroSDK Library: 2.0.0.0
Category: Biometrics
Downloaded: 210 times
Not followed.
License: MIT license
ECG 2 Click contains ADS1194 16-bit delta-sigma analog-to-digital converters from Texas Instruments, a built-in programmable gain amplifier (PGA), an internal reference, and an onboard oscillator.
Do you want to subscribe in order to receive notifications regarding "ECG 2 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "ECG 2 Click" changes.
Do you want to report abuse regarding "ECG 2 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4850_ecg_2_click.zip [733.71KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
ECG 2 Click contains ADS1194 16-bit delta-sigma analog-to-digital converters from Texas Instruments, a built-in programmable gain amplifier (PGA), an internal reference, and an onboard oscillator.
We provide a library for the ECG 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for ECG 2 Click driver.
ecg2_cfg_setup
Config Object Initialization function.
void ecg2_cfg_setup ( ecg2_cfg_t *cfg );
ecg2_init
Initialization function.
err_t ecg2_init ( ecg2_t *ctx, ecg2_cfg_t *cfg );
ecg2_default_cfg
Click Default Configuration function.
err_t ecg2_default_cfg ( ecg2_t *ctx );
ecg2_read_an_pin_value
ECG 2 read AN pin value function.
err_t ecg2_read_an_pin_value ( ecg2_t *ctx, uint16_t *data_out );
ecg2_send_command
ECG 2 send command function.
err_t ecg2_send_command ( ecg2_t *ctx, uint8_t command );
ecg2_read_channel_data
ECG 2 read data channel function.
void ecg2_read_channel_data ( ecg2_t *ctx, uint8_t channel, uint16_t *data_out );
This is an example that demonstrates the use of the ECG 2 Click board.
The demo application is composed of two sections :
Initializes SPI and UART communication, configures INT pin as INPUT, RST pin as OUTPUT, CS pin as OUTPUT and PWM pin as OUTPUT. Initializes SPI driver, initializes ECG2 Click, sends START and RDATAC opcodes.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
ecg2_cfg_t ecg2_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
ecg2_cfg_setup( &ecg2_cfg );
ECG2_MAP_MIKROBUS( ecg2_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == ecg2_init( &ecg2, &ecg2_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
SET_SPI_DATA_SAMPLE_EDGE;
if ( ECG2_ERROR == ecg2_default_cfg ( &ecg2 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
Delay_ms ( 100 );
ecg2_send_command( &ecg2, ECG2_START_CONVERSION );
Delay_ms ( 100 );
ecg2_send_command( &ecg2, ECG2_ENABLE_READ_DATA_CONT_MODE );
Delay_ms ( 100 );
log_info( &logger, " Application Task " );
Delay_ms ( 100 );
}
Captures readings from channel and plots data to serial plotter.
void application_task ( void )
{
uint16_t ecg_an = 0;
ecg2_read_channel_data( &ecg2, 5, &ecg_an );
log_printf( &logger, " %.6u, %.8lu \r\n", ecg_an, time );
time += 5;
Delay_ms ( 5 );
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.