TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141160 times)
  2. FAT32 Library (73970 times)
  3. Network Ethernet Library (58587 times)
  4. USB Device Library (48754 times)
  5. Network WiFi Library (44443 times)
  6. FT800 Library (44024 times)
  7. GSM click (30783 times)
  8. mikroSDK (29505 times)
  9. PID Library (27324 times)
  10. microSD click (27187 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

CapSense 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: Capacitive

Downloaded: 332 times

Not followed.

License: MIT license  

CapSense 2 Click is a compact add-on board that easily integrates projected capacitive touch into user's applications. This board features the CAP1114, a multi-channel capacitive touch sensor that takes human body capacitance as an input and directly provides the real-time sensor information via the I2C serial interface from Microchip. This board contains capacitive sensing elements, a 7-segment slider, two buttons, and four LED indicators that visually detect the activation on some of these parts. This Click board™ offers reliable and accurate sensing for any application that uses capacitive touch sensing functions.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "CapSense 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "CapSense 2 Click" changes.

Do you want to report abuse regarding "CapSense 2 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


CapSense 2 Click

CapSense 2 Click is a compact add-on board that easily integrates projected capacitive touch into user's applications. This board features the CAP1114, a multi-channel capacitive touch sensor that takes human body capacitance as an input and directly provides the real-time sensor information via the I2C serial interface from Microchip. This board contains capacitive sensing elements, a 7-segment slider, two buttons, and four LED indicators that visually detect the activation on some of these parts. This Click board™ offers reliable and accurate sensing for any application that uses capacitive touch sensing functions.

capsense2_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Dec 2021.
  • Type : I2C type

Software Support

We provide a library for the CapSense 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for CapSense 2 Click driver.

Standard key functions :

  • capsense2_cfg_setup Config Object Initialization function.

    void capsense2_cfg_setup ( capsense2_cfg_t *cfg );
  • capsense2_init Initialization function.

    err_t capsense2_init ( capsense2_t *ctx, capsense2_cfg_t *cfg );
  • capsense2_default_cfg Click Default Configuration function.

    err_t capsense2_default_cfg ( capsense2_t *ctx );

Example key functions :

  • capsense2_read_register This function reads a data byte from the selected register by using I2C serial interface.

    err_t capsense2_read_register ( capsense2_t *ctx, uint8_t reg, uint8_t *data_out );
  • capsense2_get_alert_pin This function returns the alert pin logic state.

    uint8_t capsense2_get_alert_pin ( capsense2_t *ctx );
  • capsense2_clear_interrupt This function clears the INT bit of the main status register if the interrupt pin is asserted.

    err_t capsense2_clear_interrupt ( capsense2_t *ctx );

Example Description

This example demonstrates the use of CapSense 2 Click board by reading and displaying the sensor's events.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration which resets the Click board and links the desired LEDs to buttons and swipe sensors.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    capsense2_cfg_t capsense2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    capsense2_cfg_setup( &capsense2_cfg );
    CAPSENSE2_MAP_MIKROBUS( capsense2_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == capsense2_init( &capsense2, &capsense2_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( CAPSENSE2_ERROR == capsense2_default_cfg ( &capsense2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Waits for an event interrupt and displays the event on the USB UART.

void application_task ( void )
{
    if ( capsense2_get_alert_pin ( &capsense2 ) )
    {
        uint8_t button_status = 0;
        if ( CAPSENSE2_OK == capsense2_read_register ( &capsense2, CAPSENSE2_REG_BUTTON_STATUS_1, &button_status ) )
        {
            static uint8_t button_press_state = 0;
            static uint8_t swipe_state = 0;
            if ( button_status & CAPSENSE2_BUTTON_STATUS_1_UP_SLIDER )
            {
                if ( CAPSENSE2_BUTTON_STATUS_1_UP_SLIDER != swipe_state )
                {
                    log_printf ( &logger, " Swipe UP \r\n\n" );
                    swipe_state = CAPSENSE2_BUTTON_STATUS_1_UP_SLIDER;
                }
            }
            if ( button_status & CAPSENSE2_BUTTON_STATUS_1_DOWN_SLIDER )
            {
                if ( CAPSENSE2_BUTTON_STATUS_1_DOWN_SLIDER != swipe_state )
                {
                    log_printf ( &logger, " Swipe DOWN \r\n\n" );
                    swipe_state = CAPSENSE2_BUTTON_STATUS_1_DOWN_SLIDER;
                }
            }
            if ( button_status & CAPSENSE2_BUTTON_STATUS_1_BUTTON_1 )
            {
                if ( !( button_press_state & CAPSENSE2_BUTTON_STATUS_1_BUTTON_1 ) )
                {
                    log_printf ( &logger, " Button 1 pressed \r\n\n" );
                    button_press_state |= CAPSENSE2_BUTTON_STATUS_1_BUTTON_1;
                }
            }
            if ( button_status & CAPSENSE2_BUTTON_STATUS_1_BUTTON_2 )
            {
                if ( !( button_press_state & CAPSENSE2_BUTTON_STATUS_1_BUTTON_2 ) )
                {
                    log_printf ( &logger, " Button 2 pressed \r\n\n" );
                    button_press_state |= CAPSENSE2_BUTTON_STATUS_1_BUTTON_2;
                }
            }
            capsense2_clear_interrupt ( &capsense2 );

            // check if buttons are released
            if ( CAPSENSE2_OK == capsense2_read_register ( &capsense2, CAPSENSE2_REG_BUTTON_STATUS_1, &button_status ) )
            {
                if ( ( button_press_state & CAPSENSE2_BUTTON_STATUS_1_BUTTON_1 ) && 
                    !( button_status & CAPSENSE2_BUTTON_STATUS_1_BUTTON_1 ) )
                {
                    log_printf ( &logger, " Button 1 released \r\n\n" );
                    button_press_state &= ~CAPSENSE2_BUTTON_STATUS_1_BUTTON_1;
                }
                if ( ( button_press_state & CAPSENSE2_BUTTON_STATUS_1_BUTTON_2 ) && 
                    !( button_status & CAPSENSE2_BUTTON_STATUS_1_BUTTON_2 ) )
                {
                    log_printf ( &logger, " Button 2 released \r\n\n" );
                    button_press_state &= ~CAPSENSE2_BUTTON_STATUS_1_BUTTON_2;
                }
            }

            // check if swipe event is finished and display the slider position
            uint8_t slider = 0;
            if ( CAPSENSE2_OK == capsense2_read_register ( &capsense2, CAPSENSE2_REG_SLIDER_POSITION_DATA, &slider ) )
            {
                if ( slider )
                {
                    log_printf ( &logger, " Slider position: %u \r\n\n", ( uint16_t ) slider );
                }
                else
                {
                    swipe_state = 0;
                }
            }
        }
        capsense2_clear_interrupt ( &capsense2 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.CapSense2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

MIC24055 Click

0

MIC24055 Click is the buck regulator that can deliver continuous output current up to 8A and can step down voltages from up to 19V which makes this Click board easy to use with many power sources commonly available.

[Learn More]

ADC 2 Click

0

ADC 2 Click carries MCP3551/3, which is a 22-bit ADC with automatic internal offset and gain calibration.

[Learn More]

LTE Cat.4 Click

0

LTE Cat.4 Click (for Europe) is a compact add-on board made specially for 4G M2M and IoT applications in Europe. This board features the EG95EXGA-128-SGNS, an IoT/M2M-optimized LTE Cat.4 module that meets the 3GPP Release 11 standard from Quectel. It supports multiple wireless standards, including LTE-FDD, WCDMA, and GSM, ensuring broad network compatibility. Key features include multi-band LTE support (B1/B3/B7/B8/B20/B28), RX diversity for bands B1 and B8, and multi-constellation GNSS (GPS, GLONASS, BeiDou/Compass, Galileo, QZSS). It also integrates a 16-bit mono audio codec for voice functionality with support for CTIA standard headphones. Additionally, it offers a USB Type C connector for power and data transfer, AT command communication, and firmware upgrades.

[Learn More]