TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139559 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57254 times)
  4. USB Device Library (47607 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42551 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26930 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Heart Rate 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: Biometrics

Downloaded: 156 times

Not followed.

License: MIT license  

Heart Rate 7 Click is an optical biosensor Click board™ which can be used for heart-rate monitoring (HRM). This Click board™ employs a very sensitive analog front-end IC with high dynamic range, which ensures accurate and reliable readings. This analog front-end IC is coupled with the optical front end, which consists of a sensitive photo-diode (PD) and two high brightness green LEDs.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Heart Rate 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Heart Rate 7 Click" changes.

Do you want to report abuse regarding "Heart Rate 7 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Heart Rate 7 Click

Heart Rate 7 Click is an optical biosensor Click board™ which can be used for heart-rate monitoring (HRM). This Click board™ employs a very sensitive analog front-end IC with high dynamic range, which ensures accurate and reliable readings. This analog front-end IC is coupled with the optical front end, which consists of a sensitive photo-diode (PD) and two high brightness green LEDs.

heartrate7_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Dec 2021.
  • Type : I2C type

Software Support

We provide a library for the Heart Rate 7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Heart Rate 7 Click driver.

Standard key functions :

  • heartrate7_cfg_setup Config Object Initialization function.

    void heartrate7_cfg_setup ( heartrate7_cfg_t *cfg );
  • heartrate7_init Initialization function.

    err_t heartrate7_init ( heartrate7_t *ctx, heartrate7_cfg_t *cfg );
  • heartrate7_default_cfg Click Default Configuration function.

    err_t heartrate7_default_cfg ( heartrate7_t *ctx );

Example key functions :

  • heartrate7_write_reg Heart Rate 7 register write function.

    void heartrate7_write_reg( heartrate7_t *ctx, uint8_t reg_addr, uint32_t write_data ); 
  • heartrate7_read_reg Heart Rate 7 register reading function.

    uint32_t heartrate7_read_reg( heartrate7_t *ctx, uint8_t reg_addr ); 
  • heartrate7_sw_reset Heart Rate 7 software reset function.

    void heartrate7_sw_reset( heartrate7_t *ctx );

Example Description

This example showcases ability for device to read Heart Rate 7 Click Board.

The demo application is composed of two sections :

Application Init

Configures the micro controller for communication and initializes the Click board.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    heartrate7_cfg_t heartrate7_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    heartrate7_cfg_setup( &heartrate7_cfg );
    HEARTRATE7_MAP_MIKROBUS( heartrate7_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == heartrate7_init( &heartrate7, &heartrate7_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( HEARTRATE7_ERROR == heartrate7_default_cfg ( &heartrate7 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

This section shows how the data is processed and sent to the MikroPlot application.

void application_task ( void ) 
{
    sensor_value = heartrate7_get_aled1_val( &heartrate7 );
    log_printf( &logger, "%lu,%lu \r\n", sensor_value, time );
    time += 10;
    Delay_ms ( 10 );
}

Note

For testing this example application SerialPlot was used. There you can see heart rate graphicly shown.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HeartRate7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

TouchKey Click

0

Touchkey Click has four capacitive pads powered by TTP224, a touchpad detector IC. Capacitive buttons like these can be toggled even when placed under a layer of glass or paper. The board outputs an interrupt signals for each pad: OUTA, OUTB, OUTC and OUTD (in place of default mikroBUS RST, AN, PWM and INT pins, respectively).

[Learn More]

ADC 15 Click

0

ADC 15 Click is a compact add-on board that contains a high-performance data converter. This board features the ADS131M02, a two-channel, simultaneously sampling, 24-bit, delta-sigma (ΔΣ), analog-to-digital converter from Texas Instruments. The ADC inputs can be independently configured via serial peripheral interface depending on the sensor input. A low noise, programmable gain amplifier (PGA) provides gains ranging from 1 to 128 to amplify low-level signals.

[Learn More]

RTC 8 click

5

RTC 8 click is a real time clock module which has an extremely low power consumption, allowing it to be used with a single button cell battery, for an extended period of time.

[Learn More]