We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.12
mikroSDK Library: 2.0.0.0
Category: DAC
Downloaded: 186 times
Not followed.
License: MIT license
DAC 12 Click is a compact add-on board that contains a highly accurate digital-to-analog converter. This board features the DAC60508, a general-purpose octal 12-bit analog voltage-output DAC from Texas Instruments. It includes a 2.5V, 5ppm/°C internal reference, eliminating the need for an external precision reference in most applications, and supports the SPI serial interface, which operates at clock rates up to 40MHz. A user interface-selectable gain configuration provides full-scale output voltages of 1.25V, 2.5V, or 5 V. This Click board™ represents an excellent choice for digital gain and offset adjustment applications, programmable voltage, and current sources, programmable reference, and many more.
Do you want to subscribe in order to receive notifications regarding "DAC 12 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "DAC 12 Click" changes.
Do you want to report abuse regarding "DAC 12 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
4910_dac_12_click.zip [487.46KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
DAC 12 Click is a compact add-on board that contains a highly accurate digital-to-analog converter. This board features the DAC60508, a general-purpose octal 12-bit analog voltage-output DAC from Texas Instruments. It includes a 2.5V, 5ppm/°C internal reference, eliminating the need for an external precision reference in most applications, and supports the SPI serial interface, which operates at clock rates up to 40MHz. A user interface-selectable gain configuration provides full-scale output voltages of 1.25V, 2.5V, or 5 V. This Click board™ represents an excellent choice for digital gain and offset adjustment applications, programmable voltage, and current sources, programmable reference, and many more.
We provide a library for the DAC 12 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for DAC 12 Click driver.
dac12_cfg_setup
Config Object Initialization function.
void dac12_cfg_setup ( dac12_cfg_t *cfg );
dac12_init
Initialization function.
err_t dac12_init ( dac12_t *ctx, dac12_cfg_t *cfg );
dac12_default_cfg
Click Default Configuration function.
err_t dac12_default_cfg ( dac12_t *ctx );
dac12_soft_reset
This function executes the software reset command.
err_t dac12_soft_reset ( dac12_t *ctx );
dac12_set_channel_value
This function sets the raw DAC value to the specific channels output.
err_t dac12_set_channel_value ( dac12_t *ctx, uint8_t channel, uint16_t dac_value );
dac12_set_channel_voltage
This function sets the output voltage of the specific channels.
err_t dac12_set_channel_voltage ( dac12_t *ctx, uint8_t channel, float voltage );
This example demonstrates the use of DAC 12 Click board by changing the outputs voltage level every 2 seconds.
The demo application is composed of two sections :
Initializes the driver and performs the Click default configuration.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
dac12_cfg_t dac12_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
dac12_cfg_setup( &dac12_cfg );
DAC12_MAP_MIKROBUS( dac12_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == dac12_init( &dac12, &dac12_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
DAC12_SET_DATA_SAMPLE_EDGE;
if ( DAC12_ERROR == dac12_default_cfg ( &dac12 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
Changes the output voltage of all channels every 2 seconds and logs the voltage value on the USB UART. It will go through the entire voltage range taking into account the number of steps which is defined below.
void application_task ( void )
{
float step = DAC12_INTERNAL_VREF / NUMBER_OF_STEPS;
float output_voltage = step;
for ( uint8_t cnt = 0; cnt < NUMBER_OF_STEPS; cnt++ )
{
if ( DAC12_OK == dac12_set_channel_voltage ( &dac12, DAC12_SELECT_CHANNEL_ALL, output_voltage ) )
{
log_printf( &logger, " All channels output voltage set to %.3f V\r\n", output_voltage );
output_voltage += step;
Delay_ms ( 1000 );
Delay_ms ( 1000 );
}
}
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.