TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141305 times)
  2. FAT32 Library (74107 times)
  3. Network Ethernet Library (58718 times)
  4. USB Device Library (48831 times)
  5. Network WiFi Library (44526 times)
  6. FT800 Library (44078 times)
  7. GSM click (30834 times)
  8. mikroSDK (29673 times)
  9. PID Library (27357 times)
  10. microSD click (27252 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

H-Bridge 13 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 201 times

Not followed.

License: MIT license  

H-Bridge 13 Click is a compact add-on board with an H-bridge gate driver, also known as a full-bridge pre-driver. This board features the DRV8411A, a dual H-bridge motor driver with current regulations from Texas Instruments. It can drive one bipolar stepper motor, one or two brushed DC motors, solenoids, and other inductive loads.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "H-Bridge 13 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "H-Bridge 13 Click" changes.

Do you want to report abuse regarding "H-Bridge 13 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


H-Bridge 13 Click

H-Bridge 13 Click is a compact add-on board with an H-bridge gate driver, also known as a full-bridge pre-driver. This board features the DRV8411A, a dual H-bridge motor driver with current regulations from Texas Instruments. It can drive one bipolar stepper motor, one or two brushed DC motors, solenoids, and other inductive loads.

hbridge13_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jun 2023.
  • Type : I2C type

Software Support

We provide a library for the H-Bridge 13 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for H-Bridge 13 Click driver.

Standard key functions :

  • hbridge13_cfg_setup Config Object Initialization function.

    void hbridge13_cfg_setup ( hbridge13_cfg_t *cfg );
  • hbridge13_init Initialization function.

    err_t hbridge13_init ( hbridge13_t *ctx, hbridge13_cfg_t *cfg );
  • hbridge13_default_cfg Click Default Configuration function.

    err_t hbridge13_default_cfg ( hbridge13_t *ctx );

Example key functions :

  • hbridge13_write_reg H-Bridge 13 write register function.

    err_t hbridge13_write_reg ( hbridge13_t *ctx, uint8_t reg, uint8_t data_out );
  • hbridge13_set_direction H-Bridge 13 set direction function.

    err_t hbridge13_set_direction ( hbridge13_t *ctx, uint8_t dir_set, uint8_t speed );
  • hbridge13_get_an_voltage H-Bridge 13 get xIPROPI voltage function.

    err_t hbridge13_get_an_voltage ( hbridge13_t *ctx, float *voltage, uint8_t an_sel );

Example Description

This example demonstrates the use of the H-Bridge 13 Click board by driving the motor connected to OUT A and OUT B, in both directions with braking and freewheeling.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    hbridge13_cfg_t hbridge13_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    hbridge13_cfg_setup( &hbridge13_cfg );
    HBRIDGE13_MAP_MIKROBUS( hbridge13_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == hbridge13_init( &hbridge13, &hbridge13_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( HBRIDGE13_ERROR == hbridge13_default_cfg ( &hbridge13 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

This example is driving a motor in both directions with changes in speed and motor braking and freewheeling in between.

void application_task ( void ) 
{
    for( uint8_t n_cnt = 0; n_cnt <= 100; n_cnt += 10 )
    {
        log_printf( &logger, " Motor in forward mode with speed of %d %% \r\n", ( uint16_t ) n_cnt );
        hbridge13_set_direction( &hbridge13, HBRIDGE13_DIR_FORWARD, n_cnt );
        Delay_ms ( 1000 );
    }

    log_printf( &logger, " Motor brake is on \r\n" );
    hbridge13_set_brake( &hbridge13 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    for( uint8_t n_cnt = 0; n_cnt <= 100; n_cnt += 10 )
    {
        log_printf( &logger, " Motor in reverse with speed of %d %% \r\n", ( uint16_t ) n_cnt );
        hbridge13_set_direction( &hbridge13, HBRIDGE13_DIR_REVERSE, n_cnt );
        Delay_ms ( 1000 );
    }

    log_printf( &logger, " Motor is coasting \r\n" );
    hbridge13_set_coast( &hbridge13 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HBridge13

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Load Cell 7 Click

0

Load Cell 7 Click is a compact add-on board representing a weigh scale solution. This board features the ADS1230, a high-precision 20-bit delta-sigma analog-to-digital converter (ADC) with an outstanding noise performance from Texas Instruments. This SPI-configurable ADC (read-only) offers selectable gain and data rate values, supporting a full-scale differential input of ±39mV/±19.5mV and 10SPS/80SPS, respectively. It comes with an onboard low-noise programmable gain amplifier (PGA) and onboard oscillator providing a complete front-end solution.

[Learn More]

AudioAmp 4 Click

0

AudioAmp 4 Click is a low-power audio amplifier with a digital volume control. It is equipped with the LM4860, an audio amplifier IC capable of delivering up to 1W of continuous power to an 8 Ω load.

[Learn More]

BEE click

0

This project is a simple demonstration of working with the BEE click board. The on-board MRF24J40MA is a 2.4 GHz IEEE 802.15.4 radio transceiver module and operates in the 2.4GHz frequency band.

[Learn More]