TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139845 times)
  2. FAT32 Library (72209 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

BATT-MON 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Battery Charger

Downloaded: 195 times

Not followed.

License: MIT license  

BATT-MON 4 Click is a compact add-on board representing an advanced battery monitoring solution. This board features the LTC3337, a primary battery state of health (SOH) monitor with a built-in precision coulomb counter from Analog Devices. The LTC3337 is designed to be placed in series with a primary battery with minimal associated series voltage drop. The patented infinite dynamic range coulomb counter tallies all accumulated battery discharge and stores it in an internal register accessible via an I2C interface. In addition, this Click board™ also can set the input current limit and has an additional discharge alarm interrupt and SOH monitoring which measures and reports via an I2C interface.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "BATT-MON 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "BATT-MON 4 Click" changes.

Do you want to report abuse regarding "BATT-MON 4 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


BATT-MON 4 Click

BATT-MON 4 Click is a compact add-on board representing an advanced battery monitoring solution. This board features the LTC3337, a primary battery state of health (SOH) monitor with a built-in precision coulomb counter from Analog Devices. The LTC3337 is designed to be placed in series with a primary battery with minimal associated series voltage drop. The patented infinite dynamic range coulomb counter tallies all accumulated battery discharge and stores it in an internal register accessible via an I2C interface. In addition, this Click board™ also can set the input current limit and has an additional discharge alarm interrupt and SOH monitoring which measures and reports via an I2C interface.

battmon4_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Feb 2022.
  • Type : I2C type

Software Support

We provide a library for the BATT-MON 4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for BATT-MON 4 Click driver.

Standard key functions :

  • battmon4_cfg_setup Config Object Initialization function.

    void battmon4_cfg_setup ( battmon4_cfg_t *cfg );
  • battmon4_init Initialization function.

    err_t battmon4_init ( battmon4_t *ctx, battmon4_cfg_t *cfg );

Example key functions :

  • battmon4_get_die_temperature This function reads the chip DIE temperature in Celsius.

    err_t battmon4_get_die_temperature ( battmon4_t *ctx, float *temperature );
  • battmon4_get_batt_in_voltage This function reads the voltage from BATT IN when Ipeak is ON and OFF.

    err_t battmon4_get_batt_in_voltage ( battmon4_t *ctx, float *v_ipeak_on, float *v_ipeak_off );
  • battmon4_get_batt_out_voltage This function reads the voltage from BATT OUT when Ipeak is ON and OFF.

    err_t battmon4_get_batt_out_voltage ( battmon4_t *ctx, float *v_ipeak_on, float *v_ipeak_off );

Example Description

This example demonstrates the use of BATT-MON 4 Click board by reading the battery voltage and the chip internal temperature.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    battmon4_cfg_t battmon4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    battmon4_cfg_setup( &battmon4_cfg );
    BATTMON4_MAP_MIKROBUS( battmon4_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == battmon4_init( &battmon4, &battmon4_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the chip DIE temperature and voltage from BATT IN and BATT OUT and displays the results on the USB UART approximately once per second.

void application_task ( void )
{
    float die_temperature, batt_in_v_ipeak_on, batt_in_v_ipeak_off, batt_out_v_ipeak_on, batt_out_v_ipeak_off;

    if ( BATTMON4_OK == battmon4_get_die_temperature ( &battmon4, &die_temperature ) )
    {
        log_printf ( &logger, " Die Temperature: %.2f C \r\n\n", die_temperature );
    }

    if ( BATTMON4_OK == battmon4_get_batt_in_voltage ( &battmon4, &batt_in_v_ipeak_on, &batt_in_v_ipeak_off ) )
    {
        log_printf ( &logger, " BATT IN \r\n Ipeak ON: %.1f mV \r\n Ipeak OFF: %.1f mV \r\n\n", 
                     batt_in_v_ipeak_on, batt_in_v_ipeak_off );
    }

    if ( BATTMON4_OK == battmon4_get_batt_out_voltage ( &battmon4, &batt_out_v_ipeak_on, &batt_out_v_ipeak_off ) )
    {
        log_printf ( &logger, " BATT OUT \r\n Ipeak ON: %.1f mV \r\n Ipeak OFF: %.1f mV \r\n\n", 
                     batt_out_v_ipeak_on, batt_out_v_ipeak_off );
    }

    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BATTMON4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Mikromedia 5 for STM32F7 Capacitive

0

This project contains example for testing modules on Mikromedia 5 for STM32F7 Capacitive.

[Learn More]

Hall Current 5 click

5

Hall Current 5 Click is a very accurate electric current measurement Click board based on the ACS733 IC. This IC is a galvanically isolated current sensor, which utilizes the Hall-effect principle.

[Learn More]

Thunder click

0

Example demonstrates usage of AS3935 Lighting sensor. It will detect approaching thunderstorm and display on TFT estimated distance and energy. Also user will be warned with buzzer beep.

[Learn More]