TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141361 times)
  2. FAT32 Library (74205 times)
  3. Network Ethernet Library (58776 times)
  4. USB Device Library (48854 times)
  5. Network WiFi Library (44564 times)
  6. FT800 Library (44149 times)
  7. GSM click (30883 times)
  8. mikroSDK (29739 times)
  9. PID Library (27372 times)
  10. microSD click (27309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

BATT-MON 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Battery Charger

Downloaded: 250 times

Not followed.

License: MIT license  

BATT-MON 4 Click is a compact add-on board representing an advanced battery monitoring solution. This board features the LTC3337, a primary battery state of health (SOH) monitor with a built-in precision coulomb counter from Analog Devices. The LTC3337 is designed to be placed in series with a primary battery with minimal associated series voltage drop. The patented infinite dynamic range coulomb counter tallies all accumulated battery discharge and stores it in an internal register accessible via an I2C interface. In addition, this Click board™ also can set the input current limit and has an additional discharge alarm interrupt and SOH monitoring which measures and reports via an I2C interface.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "BATT-MON 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "BATT-MON 4 Click" changes.

Do you want to report abuse regarding "BATT-MON 4 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


BATT-MON 4 Click

BATT-MON 4 Click is a compact add-on board representing an advanced battery monitoring solution. This board features the LTC3337, a primary battery state of health (SOH) monitor with a built-in precision coulomb counter from Analog Devices. The LTC3337 is designed to be placed in series with a primary battery with minimal associated series voltage drop. The patented infinite dynamic range coulomb counter tallies all accumulated battery discharge and stores it in an internal register accessible via an I2C interface. In addition, this Click board™ also can set the input current limit and has an additional discharge alarm interrupt and SOH monitoring which measures and reports via an I2C interface.

battmon4_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Feb 2022.
  • Type : I2C type

Software Support

We provide a library for the BATT-MON 4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for BATT-MON 4 Click driver.

Standard key functions :

  • battmon4_cfg_setup Config Object Initialization function.

    void battmon4_cfg_setup ( battmon4_cfg_t *cfg );
  • battmon4_init Initialization function.

    err_t battmon4_init ( battmon4_t *ctx, battmon4_cfg_t *cfg );

Example key functions :

  • battmon4_get_die_temperature This function reads the chip DIE temperature in Celsius.

    err_t battmon4_get_die_temperature ( battmon4_t *ctx, float *temperature );
  • battmon4_get_batt_in_voltage This function reads the voltage from BATT IN when Ipeak is ON and OFF.

    err_t battmon4_get_batt_in_voltage ( battmon4_t *ctx, float *v_ipeak_on, float *v_ipeak_off );
  • battmon4_get_batt_out_voltage This function reads the voltage from BATT OUT when Ipeak is ON and OFF.

    err_t battmon4_get_batt_out_voltage ( battmon4_t *ctx, float *v_ipeak_on, float *v_ipeak_off );

Example Description

This example demonstrates the use of BATT-MON 4 Click board by reading the battery voltage and the chip internal temperature.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    battmon4_cfg_t battmon4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    battmon4_cfg_setup( &battmon4_cfg );
    BATTMON4_MAP_MIKROBUS( battmon4_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == battmon4_init( &battmon4, &battmon4_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the chip DIE temperature and voltage from BATT IN and BATT OUT and displays the results on the USB UART approximately once per second.

void application_task ( void )
{
    float die_temperature, batt_in_v_ipeak_on, batt_in_v_ipeak_off, batt_out_v_ipeak_on, batt_out_v_ipeak_off;

    if ( BATTMON4_OK == battmon4_get_die_temperature ( &battmon4, &die_temperature ) )
    {
        log_printf ( &logger, " Die Temperature: %.2f C \r\n\n", die_temperature );
    }

    if ( BATTMON4_OK == battmon4_get_batt_in_voltage ( &battmon4, &batt_in_v_ipeak_on, &batt_in_v_ipeak_off ) )
    {
        log_printf ( &logger, " BATT IN \r\n Ipeak ON: %.1f mV \r\n Ipeak OFF: %.1f mV \r\n\n", 
                     batt_in_v_ipeak_on, batt_in_v_ipeak_off );
    }

    if ( BATTMON4_OK == battmon4_get_batt_out_voltage ( &battmon4, &batt_out_v_ipeak_on, &batt_out_v_ipeak_off ) )
    {
        log_printf ( &logger, " BATT OUT \r\n Ipeak ON: %.1f mV \r\n Ipeak OFF: %.1f mV \r\n\n", 
                     batt_out_v_ipeak_on, batt_out_v_ipeak_off );
    }

    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BATTMON4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

I2C MUX 2 click

5

I2C MUX 2 Click is a quad bidirectional translating I2C and SMBus switch with reset and interrupt functions, intended for applications with I2C slave address conflicts. It features a quad bidirectional translating switch controlled via the I2C bus, labeled as TCA9545A from Texas Instruments.

[Learn More]

Diff Press Click

0

Diff Press Click is an accurate pressure sensor Click board™ capable of measuring differential pressure.

[Learn More]

V to Hz Click

0

V to HZ Click is a device that converts an analog voltage input signal into a pulse wave signal of a certain frequency. It has a linear response, so applying a voltage in a range of 0 to 5V on its input, will result in generating the pulse train with frequency linearly proportional to the input voltage.

[Learn More]