TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141318 times)
  2. FAT32 Library (74154 times)
  3. Network Ethernet Library (58737 times)
  4. USB Device Library (48834 times)
  5. Network WiFi Library (44544 times)
  6. FT800 Library (44120 times)
  7. GSM click (30857 times)
  8. mikroSDK (29699 times)
  9. PID Library (27359 times)
  10. microSD click (27273 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Multi Stepper TB62261 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: Stepper

Downloaded: 216 times

Not followed.

License: MIT license  

Multi Stepper Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the TB62261FTG, a PHASE-in controlled bipolar stepping motor driver from Toshiba Semiconductor. It supports a PWM constant-current control drive and full-, half-, and quarter-step operation for less motor noise and smoother control. It has a wide operating voltage range of 10V to 38V with an output current capacity of 1.2A in addition to several built-in error detection circuits.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Multi Stepper TB62261 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Multi Stepper TB62261 Click" changes.

Do you want to report abuse regarding "Multi Stepper TB62261 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Multi Stepper TB62261 Click

Multi Stepper Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the TB62261FTG, a PHASE-in controlled bipolar stepping motor driver from Toshiba Semiconductor. It supports a PWM constant-current control drive and full-, half-, and quarter-step operation for less motor noise and smoother control. It has a wide operating voltage range of 10V to 38V with an output current capacity of 1.2A in addition to several built-in error detection circuits.

multisteppertb62261_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Feb 2022.
  • Type : I2C type

Software Support

We provide a library for the Multi Stepper TB62261 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Multi Stepper TB62261 Click driver.

Standard key functions :

  • multisteppertb62261_cfg_setup Config Object Initialization function.

    void multisteppertb62261_cfg_setup ( multisteppertb62261_cfg_t *cfg );
  • multisteppertb62261_init Initialization function.

    err_t multisteppertb62261_init ( multisteppertb62261_t *ctx, multisteppertb62261_cfg_t *cfg );
  • multisteppertb62261_default_cfg Click Default Configuration function.

    err_t multisteppertb62261_default_cfg ( multisteppertb62261_t *ctx );

Example key functions :

  • multisteppertb62261_set_step_mode This function sets the step mode resolution settings in ctx->step_mode.

    void multisteppertb62261_set_step_mode ( multisteppertb62261_t *ctx, uint8_t mode );
  • multisteppertb62261_drive_motor This function drives the motor for the specific number of steps at the selected speed.

    err_t multisteppertb62261_drive_motor ( multisteppertb62261_t *ctx, uint32_t steps, uint8_t speed );
  • multisteppertb62261_set_direction This function sets the motor direction to clockwise or counter-clockwise in ctx->direction.

    void multisteppertb62261_set_direction ( multisteppertb62261_t *ctx, uint8_t dir );

Example Description

This example demonstrates the use of the Multi Stepper TB62261 Click board by driving the motor in both directions for a desired number of steps.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    multisteppertb62261_cfg_t multisteppertb62261_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    multisteppertb62261_cfg_setup( &multisteppertb62261_cfg );
    MULTISTEPPERTB62261_MAP_MIKROBUS( multisteppertb62261_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == multisteppertb62261_init( &multisteppertb62261, &multisteppertb62261_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( MULTISTEPPERTB62261_ERROR == multisteppertb62261_default_cfg ( &multisteppertb62261 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor clockwise for 200 steps and then counter-clockiwse for 100 steps with 2 seconds delay before changing the direction. Each step will be logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    multisteppertb62261_set_direction ( &multisteppertb62261, MULTISTEPPERTB62261_DIR_CW );
    if ( MULTISTEPPERTB62261_OK == multisteppertb62261_drive_motor ( &multisteppertb62261, 200, 
                                                                     MULTISTEPPERTB62261_SPEED_FAST ) )
    {
        log_printf ( &logger, " Move 200 steps clockwise \r\n\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }

    multisteppertb62261_set_direction ( &multisteppertb62261, MULTISTEPPERTB62261_DIR_CCW );
    if ( MULTISTEPPERTB62261_OK == multisteppertb62261_drive_motor ( &multisteppertb62261, 100,
                                                                     MULTISTEPPERTB62261_SPEED_FAST ) )
    {
        log_printf ( &logger, " Move 100 steps counter-clockwise \r\n\n" );
        Delay_ms ( 1000 );
        Delay_ms ( 1000 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.MultiStepperTB62261

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

LR 2 Click

0

LR 2 Click is a compact add-on board that contains a low-power, long-range transceiver. This board features the RN2903, RF technology-based SRD transceiver, which operates at a frequency of 915MHz from Microchip Technology. This Click board™ features an embedded LoRaWAN Class A compliant stack, providing a long-range spread spectrum communication with high interference immunity. The RN2903 module is fully compliant with the United States (FCC) and Canada (IC) regulations combined with the advanced and straightforward command interface allowing easy integration into the final application.

[Learn More]

USB-C Sink 2 Click

0

USB-C Sink 2 Click is a compact add-on board with a standalone autonomous USB power delivery controller. This board features the AP33772, a high-performance USB PD sink controller from Diodes Incorporated. It supports dead battery mode to allow a system to be powered from an external source directly, establishes a valid source-to-sink connection, and negotiates a USB power delivery (PD) contract with a PD-capable source device. It also supports a flexible PD3.0 and PPS for applications that require direct voltage and current requests, with fine-tuning capabilities.

[Learn More]

Barometer 6 Click

0

Barometer 6 Click is a compact add-on board used to measure air pressure in a specific environment. This board features the 2SMPB-02E, a high-accuracy digital barometric air pressure sensor with low current consumption from Omron Electronics. The 2SMPB-02E has a calibration parameter for broader pressure and temperature range, features a MEMS chip for sensing air pressure and an IC chip for signal processing.

[Learn More]