TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140162 times)
  2. FAT32 Library (72618 times)
  3. Network Ethernet Library (57641 times)
  4. USB Device Library (47953 times)
  5. Network WiFi Library (43552 times)
  6. FT800 Library (42941 times)
  7. GSM click (30140 times)
  8. mikroSDK (28668 times)
  9. PID Library (27053 times)
  10. microSD click (26552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

EEPROM 6 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: EEPROM

Downloaded: 181 times

Not followed.

License: MIT license  

EEPROM 6 Click is a compact add-on board that contains a serial EEPROM memory that operates from the 1-Wire interface. This board features the DS28EC20, a 20480-bit EEPROM organized as 80 memory pages of 256 bits each from Analog Devices. As a specific feature, blocks of eight memory pages can be write-protected or put in “EPROM-Emulation” Mode, where bits can only be changed from a 1 to a 0 state. It communicates with MCU at 15.4kbps or 90kbps over the 1-Wire protocol and has a 64-bit registration number that ensures error-free device selection.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "EEPROM 6 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "EEPROM 6 Click" changes.

Do you want to report abuse regarding "EEPROM 6 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


EEPROM 6 Click

EEPROM 6 Click is a compact add-on board that contains a serial EEPROM memory that operates from the 1-Wire interface. This board features the DS28EC20, a 20480-bit EEPROM organized as 80 memory pages of 256 bits each from Analog Devices. As a specific feature, blocks of eight memory pages can be write-protected or put in “EPROM-Emulation” Mode, where bits can only be changed from a 1 to a 0 state. It communicates with MCU at 15.4kbps or 90kbps over the 1-Wire protocol and has a 64-bit registration number that ensures error-free device selection.

eeprom6_click.png

Click Product page


Click library

  • Author : Nikola Citakovic
  • Date : Mar 2022.
  • Type : One Wire type

Software Support

We provide a library for the EEPROM 6 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for EEPROM 6 Click driver.

Standard key functions :

  • eeprom6_cfg_setup Config Object Initialization function.

    void eeprom6_cfg_setup ( eeprom6_cfg_t *cfg );
  • eeprom6_init Initialization function.

    err_t eeprom6_init ( eeprom6_t *ctx, eeprom6_cfg_t *cfg );
  • eeprom6_default_cfg Click Default Configuration function.

    err_t eeprom6_default_cfg ( eeprom6_t *ctx );

Example key functions :

  • eeprom6_write_mem This function writes a sequential data starting of the targeted 16b register address of the targeted 16-bit register address of the DS28EC20.

    err_t eeprom6_write_mem ( eeprom6_t *ctx, uint16_t reg_adr, uint8_t *data_in, uint16_t n_len );
  • eeprom6_read_mem This function reads a sequential data starting from the targeted 16-bit register address of the DS28EC20.

    err_t eeprom6_read_mem ( eeprom6_t *ctx, uint16_t reg_adr, uint8_t *data_in, uint16_t n_len );

Example Description

This example demonstrates the use of EEPROM6 Click board by writing string to a memory at some specific location and then reading it back.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    eeprom6_cfg_t eeprom6_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    eeprom6_cfg_setup( &eeprom6_cfg );
    EEPROM6_MAP_MIKROBUS( eeprom6_cfg, MIKROBUS_1 );
    if ( ONE_WIRE_ERROR == eeprom6_init( &eeprom6, &eeprom6_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( EEPROM6_ERROR == eeprom6_default_cfg ( &eeprom6 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

This example shows capabilities of EEPROM 6 Click board by writting a string into memory location from a specific address, and then reading it back every 5 seconds.

void application_task ( void )
{
    log_printf( &logger, "Writing \"%s\" to memory address 0x%.4X\r\n", 
                ( uint8_t * ) EEPROM6_DEMO_TEXT, EEPROM6_TEXT_ADDRESS );
    eeprom6_write_mem( &eeprom6, EEPROM6_TEXT_ADDRESS, ( char * ) EEPROM6_DEMO_TEXT,
                       strlen ( EEPROM6_DEMO_TEXT ) );
    Delay_ms ( 100 );    
    uint8_t read_buf[ 100 ] = { 0 };
    eeprom6_read_mem ( &eeprom6, EEPROM6_TEXT_ADDRESS,read_buf,
                       strlen ( EEPROM6_DEMO_TEXT ) );
    log_printf( &logger, "Reading \"%s\" from memory address 0x%.4X\r\n\n",
                read_buf, ( uint16_t ) EEPROM6_TEXT_ADDRESS );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.EEPROM6

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

USB UART 5 Click

0

USB UART 5 Click is a compact add-on board with a general-purpose USB to UART serial interface. This board features the CP2110, a highly-integrated USB-to-UART bridge controller from Silicon Labs. The CP2110 uses the standard USB HID device class, requiring no custom driver and a UART interface that implements all RS-232 signals, including control and hardware handshaking, so existing system firmware does not need to be modified. The UART capabilities of the CP2110 also include baud rate support from 300 to 1Mbps, hardware flow control, RS-485 support, and GPIO signals that are user-defined for status and control information.

[Learn More]

5G NB IoT Click

0

5G NB IoT Click is a Click board™ based on Gemalto's Cinterion® ENS22 NB-IoT Wireless Module platform that boosts highly efficient future 5G connectivity for the IoT.

[Learn More]

9DOF 3 Click

0

9DOF 3 Click introduces the BMX055, a small-scale absolute orientation sensor in the class of low-noise 9-axis measurement units, from Bosch Sensortec. It comprises the full functionality of a triaxial, low-g acceleration sensor, a triaxial angular rate sensor and a triaxial geomagnetic sensor. All three sensor components of the BMX055 can be operated and addressed independently from each other. On top, the BMX055 integrates a multitude of features that facilitate its use especially in the area of motion detection applications, such as device orientation measurement, gaming, HMI or menu browser control. 9DOF 3 Click offers both SPI and I2C digital interfaces for easy and fast system integration.

[Learn More]