TOP Contributors

  1. MIKROE (2779 codes)
  2. Alcides Ramos (376 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139566 times)
  2. FAT32 Library (72041 times)
  3. Network Ethernet Library (57255 times)
  4. USB Device Library (47615 times)
  5. Network WiFi Library (43219 times)
  6. FT800 Library (42566 times)
  7. GSM click (29930 times)
  8. mikroSDK (28292 times)
  9. PID Library (26933 times)
  10. microSD click (26309 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

EEPROM 6 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.10

mikroSDK Library: 2.0.0.0

Category: EEPROM

Downloaded: 160 times

Not followed.

License: MIT license  

EEPROM 6 Click is a compact add-on board that contains a serial EEPROM memory that operates from the 1-Wire interface. This board features the DS28EC20, a 20480-bit EEPROM organized as 80 memory pages of 256 bits each from Analog Devices. As a specific feature, blocks of eight memory pages can be write-protected or put in “EPROM-Emulation” Mode, where bits can only be changed from a 1 to a 0 state. It communicates with MCU at 15.4kbps or 90kbps over the 1-Wire protocol and has a 64-bit registration number that ensures error-free device selection.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "EEPROM 6 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "EEPROM 6 Click" changes.

Do you want to report abuse regarding "EEPROM 6 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


EEPROM 6 Click

EEPROM 6 Click is a compact add-on board that contains a serial EEPROM memory that operates from the 1-Wire interface. This board features the DS28EC20, a 20480-bit EEPROM organized as 80 memory pages of 256 bits each from Analog Devices. As a specific feature, blocks of eight memory pages can be write-protected or put in “EPROM-Emulation” Mode, where bits can only be changed from a 1 to a 0 state. It communicates with MCU at 15.4kbps or 90kbps over the 1-Wire protocol and has a 64-bit registration number that ensures error-free device selection.

eeprom6_click.png

Click Product page


Click library

  • Author : Nikola Citakovic
  • Date : Mar 2022.
  • Type : One Wire type

Software Support

We provide a library for the EEPROM 6 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for EEPROM 6 Click driver.

Standard key functions :

  • eeprom6_cfg_setup Config Object Initialization function.

    void eeprom6_cfg_setup ( eeprom6_cfg_t *cfg );
  • eeprom6_init Initialization function.

    err_t eeprom6_init ( eeprom6_t *ctx, eeprom6_cfg_t *cfg );
  • eeprom6_default_cfg Click Default Configuration function.

    err_t eeprom6_default_cfg ( eeprom6_t *ctx );

Example key functions :

  • eeprom6_write_mem This function writes a sequential data starting of the targeted 16b register address of the targeted 16-bit register address of the DS28EC20.

    err_t eeprom6_write_mem ( eeprom6_t *ctx, uint16_t reg_adr, uint8_t *data_in, uint16_t n_len );
  • eeprom6_read_mem This function reads a sequential data starting from the targeted 16-bit register address of the DS28EC20.

    err_t eeprom6_read_mem ( eeprom6_t *ctx, uint16_t reg_adr, uint8_t *data_in, uint16_t n_len );

Example Description

This example demonstrates the use of EEPROM6 Click board by writing string to a memory at some specific location and then reading it back.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    eeprom6_cfg_t eeprom6_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    eeprom6_cfg_setup( &eeprom6_cfg );
    EEPROM6_MAP_MIKROBUS( eeprom6_cfg, MIKROBUS_1 );
    if ( ONE_WIRE_ERROR == eeprom6_init( &eeprom6, &eeprom6_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( EEPROM6_ERROR == eeprom6_default_cfg ( &eeprom6 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

This example shows capabilities of EEPROM 6 Click board by writting a string into memory location from a specific address, and then reading it back every 5 seconds.

void application_task ( void )
{
    log_printf( &logger, "Writing \"%s\" to memory address 0x%.4X\r\n", 
                ( uint8_t * ) EEPROM6_DEMO_TEXT, EEPROM6_TEXT_ADDRESS );
    eeprom6_write_mem( &eeprom6, EEPROM6_TEXT_ADDRESS, ( char * ) EEPROM6_DEMO_TEXT,
                       strlen ( EEPROM6_DEMO_TEXT ) );
    Delay_ms ( 100 );    
    uint8_t read_buf[ 100 ] = { 0 };
    eeprom6_read_mem ( &eeprom6, EEPROM6_TEXT_ADDRESS,read_buf,
                       strlen ( EEPROM6_DEMO_TEXT ) );
    log_printf( &logger, "Reading \"%s\" from memory address 0x%.4X\r\n\n",
                read_buf, ( uint16_t ) EEPROM6_TEXT_ADDRESS );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.EEPROM6

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

LED Driver 15 Click

0

LED Driver 15 Click is a compact add-on board that simplifies the control of multiple LEDs. This board features the MP3309C, a fully integrated synchronous boost white LED driver with an I2C interface from Monolithic Power Systems. The MP3309C offers high efficiency, delivers up to 40mA of LED current, and operates from a voltage of mikroBUS™ power rails, supporting up to 8 white LEDs in series. It also features a programmable switching frequency to optimize efficiency, supports analog and PWM dimming, and has multiple built-in protection functions that protect the circuit during abnormalities.

[Learn More]

Thermo 24 Click

0

Thermo 24 Click is a compact add-on board that contains the 4th generation temperature sensing solution from Sensirion. This board features the STS40, a high-accuracy ultra-low-power temperature sensor. The STS40 integrates a digital temperature sensor with a 16-bit analog-to-digital converter (ADC), a data processing circuit, and serial interface logic functions in one package. Characterized by its high accuracy (up to ±0.2°C typical) and high resolution of 0.01°C, this temperature sensor provides temperature data to the host controller with a configurable I2C interface.

[Learn More]

SPI Extend click

5

SPI Extend Click is a compact add-on board for applications that require extending the SPI communication bus over a long distance. This board features the LTC4332, an SPI slave extender device, from Analog Devices.

[Learn More]