TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (385 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139845 times)
  2. FAT32 Library (72210 times)
  3. Network Ethernet Library (57392 times)
  4. USB Device Library (47740 times)
  5. Network WiFi Library (43364 times)
  6. FT800 Library (42700 times)
  7. GSM click (29980 times)
  8. mikroSDK (28440 times)
  9. PID Library (26989 times)
  10. microSD click (26398 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Smart Mic Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.13

mikroSDK Library: 2.0.0.0

Category: Microphone

Downloaded: 237 times

Not followed.

License: MIT license  

Smart Mic Click is a compact add-on board that provides wake-on-voice capabilities with secured privacy without compromising performance. This board features the IA611, an “Always-On” voice-wake acoustic processor from Knowles Electronics. The IA611 offers flexibility by supporting the most relevant audio and data interfaces and enables ultra-low-power voice and event detection, including voice UI supporting keywords, voice commands, and acoustic event detection. Its integrated programmable DSP is made available to 3rd party algorithms with 168kB of RAM, enabling unlimited creativity.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Smart Mic Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Smart Mic Click" changes.

Do you want to report abuse regarding "Smart Mic Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Smart Mic Click

Smart Mic Click is a compact add-on board that provides wake-on-voice capabilities with secured privacy without compromising performance. This board features the IA611, an “Always-On” voice-wake acoustic processor from Knowles Electronics. The IA611 offers flexibility by supporting the most relevant audio and data interfaces and enables ultra-low-power voice and event detection, including voice UI supporting keywords, voice commands, and acoustic event detection. Its integrated programmable DSP is made available to 3rd party algorithms with 168kB of RAM, enabling unlimited creativity.

smartmic_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Mar 2022.
  • Type : I2C/SPI type

Software Support

We provide a library for the Smart Mic Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Smart Mic Click driver.

Standard key functions :

  • smartmic_cfg_setup Config Object Initialization function.

    void smartmic_cfg_setup ( smartmic_cfg_t *cfg );
  • smartmic_init Initialization function.

    err_t smartmic_init ( smartmic_t *ctx, smartmic_cfg_t *cfg );
  • smartmic_default_cfg Click Default Configuration function.

    err_t smartmic_default_cfg ( smartmic_t *ctx );

Example key functions :

  • smartmic_wait_keyword This function waits for a keyword event and then reads it and returns the keyword ID number.

    err_t smartmic_wait_keyword ( smartmic_t *ctx );
  • smartmic_download_keyword This function downloads keyword models to the module.

    err_t smartmic_download_keyword ( smartmic_t *ctx, uint16_t *data_in, uint16_t len );
  • smartmic_voice_make This function performs voice make feature. It stops the route, then sets digital gain to 20db, sample rate to 16K, frame size to 16 ms, and finally it selects route 6 and configures algorithm parameters.

    err_t smartmic_voice_make ( smartmic_t *ctx );

Example Description

This example demonstrates the use of Smart Mic Click board by programming it with 4 different keywords, and then waiting for a keyword event, parsing it and displaying on the USB UART.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration which programs the device with system config, firmware, and 4 keywords ("Hello VoiceQ","Switch The Light","Next Song","Baidu Yixia") binaries.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    smartmic_cfg_t smartmic_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    smartmic_cfg_setup( &smartmic_cfg );
    SMARTMIC_MAP_MIKROBUS( smartmic_cfg, MIKROBUS_1 );
    if ( SMARTMIC_OK != smartmic_init( &smartmic, &smartmic_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_printf( &logger, " Configuring device... \r\n" );

    if ( SMARTMIC_OK != smartmic_default_cfg ( &smartmic ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Waits for a keyword event, parses it and displays on the USB UART an appropriate message for the detected keyword.

void application_task ( void )
{
    switch ( smartmic_wait_keyword ( &smartmic ) )
    {
        case SMARTMIC_OEM1_KWD_DETECTED:
        {
            log_printf ( &logger, " Hello VoiceQ keyword detected!\r\n" );
            break;
        }
        case SMARTMIC_OEM2_KWD_DETECTED:
        {
            log_printf ( &logger, " Switch The Light keyword detected!\r\n" );
            break;
        }
        case SMARTMIC_OEM3_KWD_DETECTED:
        {
            log_printf ( &logger, " Next Song keyword detected!\r\n" );
            break;
        }
        case SMARTMIC_OEM4_KWD_DETECTED:
        {
            log_printf ( &logger, " Baidu YiXia keyword detected!\r\n" );
            break;
        } 
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SmartMic

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

13DOF 2 click

5

13DOF 2 click is an advanced 13-axis motion tracking Click board, which utilizes two different sensor ICs onboard: BME680, voc, humidity, pressure and temperature sensor and BMX160, a 9-axis sensor consisting of a 3-axis, low-g accelerometer, a low power 3-axis gyroscope and a 3-axis geomagnetic sensor.

[Learn More]

Ambient Click

0

Ambient Click carries the Melexis MLX75305 IC. It’s a CMOS integrated optical sensor that consists of a photodiode, a transimpendance amplifier, and an output transistor.

[Learn More]

EEPROM 2 Click

0

EEPROM2 Click provides 2 Mbit (2,097,152 bits) of Electrically Erasable and Programmable Read Only Memory, organized in bytes. In other words, this Click board™ is an EEPROM memory medium with the capacity of 256 KB. The used EEPROM module has an impressive endurance of 4,000,000 write cycles and data retention period of over 200 years.

[Learn More]