TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141699 times)
  2. FAT32 Library (74777 times)
  3. Network Ethernet Library (59219 times)
  4. USB Device Library (49226 times)
  5. Network WiFi Library (44999 times)
  6. FT800 Library (44536 times)
  7. GSM click (31200 times)
  8. mikroSDK (30103 times)
  9. microSD click (27586 times)
  10. PID Library (27543 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Gyro 7 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.11

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 263 times

Not followed.

License: MIT license  

Gyro 7 Click is a compact add-on board that contains a high-performance gyroscope. This board features the ICG-1020S, a dual-axis MEMS angular rate sensor (gyroscope) from TDK InvenSense. The ICG-1020S provides extremely low RMS noise as well as noise density. The high-resolution gyroscope supports a full-scale programmable range of ±46.5dps to ±374dps, a fast sample rate at up to 32kHz, an SPI serial interface, and extremely low power consumption. This Click board™ is designed for optical image stabilization (OIS) applications.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Gyro 7 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Gyro 7 Click" changes.

Do you want to report abuse regarding "Gyro 7 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Gyro 7 Click

Gyro 7 Click is a compact add-on board that contains a high-performance gyroscope. This board features the ICG-1020S, a dual-axis MEMS angular rate sensor (gyroscope) from TDK InvenSense. The ICG-1020S provides extremely low RMS noise as well as noise density. The high-resolution gyroscope supports a full-scale programmable range of ±46.5dps to ±374dps, a fast sample rate at up to 32kHz, an SPI serial interface, and extremely low power consumption. This Click board™ is designed for optical image stabilization (OIS) applications.

gyro7_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Apr 2022.
  • Type : SPI type

Software Support

We provide a library for the Gyro 7 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Gyro 7 Click driver.

Standard key functions :

  • gyro7_cfg_setup Config Object Initialization function.

    void gyro7_cfg_setup ( gyro7_cfg_t *cfg );
  • gyro7_init Initialization function.

    err_t gyro7_init ( gyro7_t *ctx, gyro7_cfg_t *cfg );
  • gyro7_default_cfg Click Default Configuration function.

    err_t gyro7_default_cfg ( gyro7_t *ctx );

Example key functions :

  • gyro7_get_int_pin This function returns the INT pin logic state.

    uint8_t gyro7_get_int_pin ( gyro7_t *ctx );
  • gyro7_read_gyroscope This function reads the gyroscope X and Y axis in degrees per second (dps).

    err_t gyro7_read_gyroscope ( gyro7_t *ctx, float *x_axis, float *y_axis );
  • gyro7_read_temperature This function reads the internal temperature in Celsius.

    err_t gyro7_read_temperature ( gyro7_t *ctx, float *temperature );

Example Description

This example demonstrates the use of Gyro 7 Click board by reading and displaying the values of X and Y axis in degrees per second and the chip internal temperature in Celsius.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration which sets the sample rate to 40 Hz, gyroscope resolution to 374 dps, and enables the data ready interrupt.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    gyro7_cfg_t gyro7_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    gyro7_cfg_setup( &gyro7_cfg );
    GYRO7_MAP_MIKROBUS( gyro7_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == gyro7_init( &gyro7, &gyro7_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( GYRO7_ERROR == gyro7_default_cfg ( &gyro7 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Waits for the data ready interrupt, then reads the values of X and Y gyroscope axis as well as the chip internal temperature and displays the results on the USB UART. The data sample rate is set to 40Hz by default, therefore the data is being read approximately every 25ms.

void application_task ( void )
{
    if ( gyro7_get_int_pin ( &gyro7 ) )
    {
        float x_axis, y_axis, temperature;
        if ( GYRO7_OK == gyro7_read_gyroscope ( &gyro7, &x_axis, &y_axis ) )
        {
            log_printf( &logger, " X : %.2f dps\r\n", x_axis );
            log_printf( &logger, " Y : %.2f dps\r\n", y_axis );
        }
        if ( GYRO7_OK == gyro7_read_temperature ( &gyro7, &temperature ) )
        {
            log_printf( &logger, " Temperature : %.2f C\r\n\n", temperature );
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Gyro7

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

VREG 2 click

5

VREG 2 click is a voltage regulator click, with outstanding performances. It has a steady output voltage with the ripple lower than 5mV, short circuit protection with the LED indicator, and high efficiency with minimal power dissipation.

[Learn More]

Proximity 13 click

5

Proximity 13 Click based on SI1153-AB09-GMR IC from Silicon Labs that can be used as an proximity, and gesture detector with I2C digital interface and programmable-event interrupt output. The host can send command the Proximity 13 click to initiate on-demand proximity measurements.

[Learn More]

3D Motion click board - Example

1

3D Motion click carries Microchip’s MM7150 9-axis sensor fusion motion module. It’s a complete self contained solution comprising a 3-axis accelerometer, a gyroscope, a magnetometer, and a SSC7150 motion coprocessor. Example displays data acquired from the sensors on TFT display.

[Learn More]