TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140544 times)
  2. FAT32 Library (73037 times)
  3. Network Ethernet Library (58043 times)
  4. USB Device Library (48215 times)
  5. Network WiFi Library (43826 times)
  6. FT800 Library (43295 times)
  7. GSM click (30359 times)
  8. mikroSDK (28990 times)
  9. PID Library (27116 times)
  10. microSD click (26721 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

AMR Angle 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.12

mikroSDK Library: 2.0.0.0

Category: Magnetic

Downloaded: 179 times

Not followed.

License: MIT license  

AMR Angle 2 Click is a compact add-on board containing an anisotropic magnetoresistive measurement solution ideal for either angle or linear position measurements. This board features the ADA4570, an integrated AMR angle sensor with an integrated signal conditioner and differential outputs from Analog Devices. The ADA4570 delivers amplified differential cosine and sine output signals, with respect to the angle measuring from 0° to 180° when the magnetic field is rotating in the x-axis and the y-axis (x-y) plane, processed later by MAX11122, SAR ADC, which forwards the digital angle information to MCU via SPI interface for further processing.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "AMR Angle 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "AMR Angle 2 Click" changes.

Do you want to report abuse regarding "AMR Angle 2 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


AMR Angle 2 Click

AMR Angle 2 Click is a compact add-on board containing an anisotropic magnetoresistive measurement solution ideal for either angle or linear position measurements. This board features the ADA4570, an integrated AMR angle sensor with an integrated signal conditioner and differential outputs from Analog Devices. The ADA4570 delivers amplified differential cosine and sine output signals, with respect to the angle measuring from 0° to 180° when the magnetic field is rotating in the x-axis and the y-axis (x-y) plane, processed later by MAX11122, SAR ADC, which forwards the digital angle information to MCU via SPI interface for further processing.

amrangle2_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jul 2022.
  • Type : SPI type

Software Support

We provide a library for the AMR Angle 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for AMR Angle 2 Click driver.

Standard key functions :

  • amrangle2_cfg_setup Config Object Initialization function.

    void amrangle2_cfg_setup ( amrangle2_cfg_t *cfg );
  • amrangle2_init Initialization function.

    err_t amrangle2_init ( amrangle2_t *ctx, amrangle2_cfg_t *cfg );
  • amrangle2_default_cfg Click Default Configuration function.

    err_t amrangle2_default_cfg ( amrangle2_t *ctx );

Example key functions :

  • amrangle2_read_angle This function reads a Vsin and Vcos voltages and converts them to angle in Degrees.

    err_t amrangle2_read_angle ( amrangle2_t *ctx, float *angle );
  • amrangle2_read_temperature This function reads a temperature measurements in Celsius.

    err_t amrangle2_read_temperature ( amrangle2_t *ctx, float *temperature );
  • amrangle2_read_vsin_vcos This function reads a voltage of sine and cosine differential signal outputs.

    err_t amrangle2_read_vsin_vcos ( amrangle2_t *ctx, float *vsin, float *vcos );

Example Description

This example demonstrates the use of AMR Angle 2 Click board by reading and displaying the magnet's angular position in Degrees and a system temperature in Celsius.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    amrangle2_cfg_t amrangle2_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    amrangle2_cfg_setup( &amrangle2_cfg );
    AMRANGLE2_MAP_MIKROBUS( amrangle2_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == amrangle2_init( &amrangle2, &amrangle2_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( AMRANGLE2_ERROR == amrangle2_default_cfg ( &amrangle2 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the magnet's angular position in degrees and a system temperature in Celsius and displays the results on the USB UART approximately every 100ms.

void application_task ( void )
{
    float angle, temperature;
    if ( AMRANGLE2_OK == amrangle2_read_angle ( &amrangle2, &angle ) ) 
    {
        log_printf( &logger, " Angle: %.2f Degrees\r\n", angle );
    }
    if ( AMRANGLE2_OK == amrangle2_read_temperature ( &amrangle2, &temperature ) ) 
    {
        log_printf( &logger, " Temperature: %.2f C\r\n\n", temperature );
    }
    Delay_ms ( 100 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.AMRAngle2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

LTE IoT 5 Click

0

LTE IoT 5 Click is an add-on board with a compact and cost-effective secure-cloud multi-band solution designed for IoT applications. This board features the SARA-R510M8S, a cellular module that supports LTE Cat M1/Cat NB2 bands with integrated high-performance standard precision M8 GNSS receiver for global position acquisition from u-Blox. Equipped with familiar AT commands set over the UART interface, USB interface, and Network and Status indicators this low power size-optimized solution, specifically designed for IoT, also provides over-the-air firmware updates, end-to-end trusted domain security, and u-Blox’s leading GNSS technology.

[Learn More]

OLED B click

5

OLED B click carries a 96 x 39px blue monochrome passive matrix OLED display. The display is bright, has a wide viewing angle and low power consumption. To drive the display, OLED B click features an SSD1306 controller.

[Learn More]

SE051 Plug n Trust Click

0

SE051 Plug&Trust Click is a compact add-on board representing a ready-to-use IoT security solution. This board features the SE051C2, an updatable extension of the EdgeLock™ SE050 from NXP Semiconductor, which delivers proven security certified to CC EAL 6+, with AVA_VAN.5up to the OS level. Designed for the latest IoT security requirements, it allows securely storing and provisioning credentials performing cryptographic operations, giving edge-to-cloud security capability right out of the box. It also provides upgrade functionality of the IoT applet while preserving on-device credentials, alongside reconfiguration possibility.

[Learn More]