TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141959 times)
  2. FAT32 Library (75148 times)
  3. Network Ethernet Library (59420 times)
  4. USB Device Library (49412 times)
  5. Network WiFi Library (45228 times)
  6. FT800 Library (44814 times)
  7. GSM click (31379 times)
  8. mikroSDK (30365 times)
  9. microSD click (27741 times)
  10. PID Library (27595 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Fingerprint 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.9

mikroSDK Library: 2.0.0.0

Category: Fingerprint

Downloaded: 239 times

Not followed.

License: MIT license  

Fingerprint 4 Click is an adapter Click board™ used to interface a compatible fingerprint sensor with the host MCU. This board features FINGERPRINTS BM-Lite Module, a complete biometric fingerprint solution ready to be used out-of-the-box. The BM-Lite Module combines superior biometric performance and a high standard of quality components to offer a comprehensive embedded solution for increased security and enhanced user convenience. It uses a 3D pixel sensing technology that can read virtually any finger, dry or wet, alongside simple serial commands with a configurable communication interface to enroll and verify. Its protective coating helps in protection against ESD, scratches, impact, and everyday wear and tear.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Fingerprint 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Fingerprint 4 Click" changes.

Do you want to report abuse regarding "Fingerprint 4 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Fingerprint 4 Click

Fingerprint 4 Click is an adapter Click board™ used to interface a compatible fingerprint sensor with the host MCU. This board features FINGERPRINTS BM-Lite Module, a complete biometric fingerprint solution ready to be used out-of-the-box. The BM-Lite Module combines superior biometric performance and a high standard of quality components to offer a comprehensive embedded solution for increased security and enhanced user convenience. It uses a 3D pixel sensing technology that can read virtually any finger, dry or wet, alongside simple serial commands with a configurable communication interface to enroll and verify. Its protective coating helps in protection against ESD, scratches, impact, and everyday wear and tear.

fingerprint4_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Sep 2022.
  • Type : SPI type

Software Support

We provide a library for the Fingerprint 4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Fingerprint 4 Click driver.

Standard key functions :

  • fingerprint4_cfg_setup Config Object Initialization function.

    void fingerprint4_cfg_setup ( fingerprint4_cfg_t *cfg );
  • fingerprint4_init Initialization function.

    err_t fingerprint4_init ( fingerprint4_t *ctx, fingerprint4_cfg_t *cfg );

Example key functions :

  • fingerprint4_version This function reads out version information from the device. The response contains a variable length string that contains version information of the device.

    err_t fingerprint4_version ( fingerprint4_t *ctx, char *version, uint8_t len );
  • fingerprint4_identify_finger This function captures and identifies finger against existing templates in Flash storage.

    err_t fingerprint4_identify_finger ( fingerprint4_t *ctx, uint32_t timeout, uint16_t *template_id, bool *match );
  • fingerprint4_wait_finger_not_present This function waits until no finger is detected on the sensor.

    err_t fingerprint4_wait_finger_not_present ( fingerprint4_t *ctx, uint32_t timeout );

Example Description

This example demonstrates the use of the Fingerprint 4 Click boards by registering 3 fingerprints and then waiting until a finger is detected on the sensor and identifying if the fingerprint matches one of those stored in the Flash storage.

The demo application is composed of two sections :

Application Init

Initializes the driver and reads the sensor firmware version, then resets the sensor and removes all stored fingerprint templates. After that it registers 3 new fingerprint templates and stores them in the Flash storage.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    fingerprint4_cfg_t fingerprint4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    fingerprint4_cfg_setup( &fingerprint4_cfg );
    FINGERPRINT4_MAP_MIKROBUS( fingerprint4_cfg, MIKROBUS_1 );
    if ( FINGERPRINT4_RES_OK != fingerprint4_init( &fingerprint4, &fingerprint4_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    fingerprint4_reset_device ( &fingerprint4 );

    fingerprint4.phy_rx_timeout = FINGERPRINT4_DEFAULT_PHY_RX_TIMEOUT_MS;

    uint8_t version[ 50 ] = { 0 };
    if ( FINGERPRINT4_RES_OK == fingerprint4_version ( &fingerprint4, version, 50 ) )
    {
        log_printf( &logger, " FW version: %s\r\n", version );
        log_printf( &logger, "---------------------------------\r\n\n" );
    }

    fingerprint4_error_check( "Sensor reset", fingerprint4_sensor_reset ( &fingerprint4 ) );

    fingerprint4_error_check( "Remove all templates", fingerprint4_template_remove_all ( &fingerprint4 ) );

    fingerprint4_register_fingerprints ( &fingerprint4, LOCATION_IN_FLASH, NUMBER_OF_FINGERPRINTS );

    log_info( &logger, " Application Task " );
}

Application Task

Waits until a finger is detected on the sensor, takes an image of the finger and checks if there's a fingerprint in the library that matches the one it has just read. If it finds a match, a fingerprint template ID will be displayed. All data is being logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    uint16_t template_id;
    bool match;
    log_printf( &logger, " Put your finger on the sensor.\r\n" );
    err_t error_flag = fingerprint4_identify_finger ( &fingerprint4, FINGERPRINT4_INFINITE_TIMEOUT, &template_id, &match );
    if ( error_flag )
    {
        fingerprint4_error_check( "Identify finger", error_flag );
    }
    else
    {
        if ( match )
        {
            log_printf( &logger, " >>>>> Fingerprint MATCH - Template ID: %u <<<<<\r\n", template_id );
        }
        else
        {
            log_printf( &logger, " >>>>> NO MATCH in the library <<<<<\r\n" );
        }
    }
    log_printf( &logger, " Lift the finger of the sensor.\r\n" );
    fingerprint4_wait_finger_not_present ( &fingerprint4, FINGERPRINT4_INFINITE_TIMEOUT );
    log_printf( &logger, "---------------------------------\r\n\n" );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Fingerprint4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Brushless 10 Click

0

Brushless 10 Click is a compact add-on board that provides precise control over brushless DC motors. This board features the TC78B016FTG, a 3-phase sine-wave PWM driver from Toshiba Semiconductor. The TC78B016FTG features Intelligent Phase Control (InPAC) for automatic motor phase adjustment, eliminating manual calibration, supporting an external power supply from 6V to 30V, and adjusting current output up to 3A. It also includes various control and diagnostic features such as rotational speed output, brake function, speed command, and safety detections with visual indicators. The onboard DAC also offers additional tunability for motor control enhancements like lead angle control, output duty cycle, motor lockout, and PWM frequency selection.

[Learn More]

Hall Current Click

0

Hall Current Click is a compact add-on board that contains a precise solution for AC/DC current sensing. This board features the TLI4970-D050T4, a 16-bit digital SPI output (13-bit current value) coreless magnetic current sensor designed for the current range of ±25A from Infineon Technology. A differential measurement principle allows effective stray field suppression with a highly linear output signal without hysteresis. Due to the integrated primary conductor (current rail), there is no need for external calibration. The TLI4970-D050T4 is highly accurate over temperature range and lifetime with fast overcurrent detection with a configurable threshold.

[Learn More]

DC Motor 11 Click

0

DC Motor 11 Click is a brushed DC motor driver with the current limiting and current sensing.

[Learn More]