TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141853 times)
  2. FAT32 Library (75010 times)
  3. Network Ethernet Library (59332 times)
  4. USB Device Library (49325 times)
  5. Network WiFi Library (45139 times)
  6. FT800 Library (44685 times)
  7. GSM click (31293 times)
  8. mikroSDK (30246 times)
  9. microSD click (27673 times)
  10. PID Library (27568 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

POT 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Potentiometers

Downloaded: 229 times

Not followed.

License: MIT license  

POT 4 Click is a compact add-on board with accurate selectable reference voltage output. This board features the PRS11R-425F-S103B1, a high-quality 11mm rotary 10k potentiometer from Bourns. The PRS11R-425F-S103B1 features a small form factor, offers an push-on momentary switch, a flatted shaft style, and a wide operating temperature range. It comes with a high-resolution 12-bit ADC, detecting even the slightest move while digitizing its position, alongside a rail-to-rail buffering operational amplifier, which provides constant input and output impedance. Besides, the user can process the output signal in analog or digital form.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "POT 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "POT 4 Click" changes.

Do you want to report abuse regarding "POT 4 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


POT 4 Click

POT 4 Click is a compact add-on board with accurate selectable reference voltage output. This board features the PRS11R-425F-S103B1, a high-quality 11mm rotary 10k potentiometer from Bourns. The PRS11R-425F-S103B1 features a small form factor, offers an push-on momentary switch, a flatted shaft style, and a wide operating temperature range. It comes with a high-resolution 12-bit ADC, detecting even the slightest move while digitizing its position, alongside a rail-to-rail buffering operational amplifier, which provides constant input and output impedance. Besides, the user can process the output signal in analog or digital form.

pot4_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Oct 2022.
  • Type : ADC/I2C type

Software Support

We provide a library for the POT 4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for POT 4 Click driver.

Standard key functions :

  • pot4_cfg_setup Config Object Initialization function.

    void pot4_cfg_setup ( pot4_cfg_t *cfg );
  • pot4_init Initialization function.

    err_t pot4_init ( pot4_t *ctx, pot4_cfg_t *cfg );

Example key functions :

  • pot4_get_switch_pin This function returns the switch (SW) pin logic state.

    uint8_t pot4_get_switch_pin ( pot4_t *ctx );
  • pot4_read_voltage This function reads raw ADC value and converts it to proportional voltage level.

    err_t pot4_read_voltage ( pot4_t *ctx, float *voltage );
  • pot4_convert_voltage_to_percents This function converts analog voltage to potentiometer position in percents.

    uint8_t pot4_convert_voltage_to_percents ( pot4_t *ctx, float voltage );

Example Description

This example demonstrates the use of POT 4 Click board by reading and displaying the potentiometer position.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    pot4_cfg_t pot4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    pot4_cfg_setup( &pot4_cfg );
    POT4_MAP_MIKROBUS( pot4_cfg, MIKROBUS_1 );
    err_t init_flag = pot4_init( &pot4, &pot4_cfg );
    if ( ( ADC_ERROR == init_flag ) || ( I2C_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads and displays on the USB UART the potentiometer position in forms of voltage and percents once per second only when the potentiometer switch is active.


void application_task ( void )
{
    if ( !pot4_get_switch_pin ( &pot4 ) )
    {
        float voltage = 0;
        if ( POT4_OK == pot4_read_voltage ( &pot4, &voltage ) ) 
        {
            log_printf( &logger, " AN Voltage : %.3f V\r\n", voltage );
            log_printf( &logger, " Potentiometer : %u %%\r\n\n", 
                        ( uint16_t ) pot4_convert_voltage_to_percents ( &pot4, voltage ) );
            Delay_ms ( 1000 );
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.POT4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

CAN FD 4 click

5

The CAN FD 4 Click is a Click board that features the NCV7344D10R2G, a Controller Area Network (CAN) transceiver, from ON Semiconductor.

[Learn More]

PAC1954 click

5

PAC1954 Click is a compact add-on board that contains an energy monitoring solution. This board features the PAC1954, a four-channel DC power/energy monitor from Microchip Technology.

[Learn More]

Stepper 19 Click

0

Stepper 19 Click is a compact add-on board for precise control over stepper motors. This board features the DRV8424, a stepper motor driver from Texas Instruments designed to drive both industrial and consumer stepper motors. The DRV8424 has dual N-channel power MOSFET H-bridge drivers, a microstepping indexer, and integrated current sensing, eliminating the need for external power sense resistors. Operating on a 5V to 30V external power supply, the DRV8424 can deliver up to 2.5A of full-scale output current, with an internal PWM current regulation scheme that includes smart tune, slow, and mixed decay options to optimize performance. Ideal for applications in multichannel system monitoring, robotics, precision positioning, and automated manufacturing processes, this Click board™ appears as a versatile solution for sophisticated stepper motor control.

[Learn More]