TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141830 times)
  2. FAT32 Library (74956 times)
  3. Network Ethernet Library (59319 times)
  4. USB Device Library (49310 times)
  5. Network WiFi Library (45108 times)
  6. FT800 Library (44676 times)
  7. GSM click (31287 times)
  8. mikroSDK (30217 times)
  9. microSD click (27664 times)
  10. PID Library (27565 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

POT 4 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Potentiometers

Downloaded: 229 times

Not followed.

License: MIT license  

POT 4 Click is a compact add-on board with accurate selectable reference voltage output. This board features the PRS11R-425F-S103B1, a high-quality 11mm rotary 10k potentiometer from Bourns. The PRS11R-425F-S103B1 features a small form factor, offers an push-on momentary switch, a flatted shaft style, and a wide operating temperature range. It comes with a high-resolution 12-bit ADC, detecting even the slightest move while digitizing its position, alongside a rail-to-rail buffering operational amplifier, which provides constant input and output impedance. Besides, the user can process the output signal in analog or digital form.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "POT 4 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "POT 4 Click" changes.

Do you want to report abuse regarding "POT 4 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


POT 4 Click

POT 4 Click is a compact add-on board with accurate selectable reference voltage output. This board features the PRS11R-425F-S103B1, a high-quality 11mm rotary 10k potentiometer from Bourns. The PRS11R-425F-S103B1 features a small form factor, offers an push-on momentary switch, a flatted shaft style, and a wide operating temperature range. It comes with a high-resolution 12-bit ADC, detecting even the slightest move while digitizing its position, alongside a rail-to-rail buffering operational amplifier, which provides constant input and output impedance. Besides, the user can process the output signal in analog or digital form.

pot4_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Oct 2022.
  • Type : ADC/I2C type

Software Support

We provide a library for the POT 4 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for POT 4 Click driver.

Standard key functions :

  • pot4_cfg_setup Config Object Initialization function.

    void pot4_cfg_setup ( pot4_cfg_t *cfg );
  • pot4_init Initialization function.

    err_t pot4_init ( pot4_t *ctx, pot4_cfg_t *cfg );

Example key functions :

  • pot4_get_switch_pin This function returns the switch (SW) pin logic state.

    uint8_t pot4_get_switch_pin ( pot4_t *ctx );
  • pot4_read_voltage This function reads raw ADC value and converts it to proportional voltage level.

    err_t pot4_read_voltage ( pot4_t *ctx, float *voltage );
  • pot4_convert_voltage_to_percents This function converts analog voltage to potentiometer position in percents.

    uint8_t pot4_convert_voltage_to_percents ( pot4_t *ctx, float voltage );

Example Description

This example demonstrates the use of POT 4 Click board by reading and displaying the potentiometer position.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    pot4_cfg_t pot4_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    pot4_cfg_setup( &pot4_cfg );
    POT4_MAP_MIKROBUS( pot4_cfg, MIKROBUS_1 );
    err_t init_flag = pot4_init( &pot4, &pot4_cfg );
    if ( ( ADC_ERROR == init_flag ) || ( I2C_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads and displays on the USB UART the potentiometer position in forms of voltage and percents once per second only when the potentiometer switch is active.


void application_task ( void )
{
    if ( !pot4_get_switch_pin ( &pot4 ) )
    {
        float voltage = 0;
        if ( POT4_OK == pot4_read_voltage ( &pot4, &voltage ) ) 
        {
            log_printf( &logger, " AN Voltage : %.3f V\r\n", voltage );
            log_printf( &logger, " Potentiometer : %u %%\r\n\n", 
                        ( uint16_t ) pot4_convert_voltage_to_percents ( &pot4, voltage ) );
            Delay_ms ( 1000 );
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.POT4

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Magneto 7 Click

0

Magneto 7 Click is a high-resolution magnetic sensor Click board™ which allows contactless orientation sensing.

[Learn More]

IoT ExpressLink Click

0

IoT ExpressLink Click is a compact add-on board that allows users to easily connected to IoT ExpressLink services and securely interact with cloud applications and other devices. This board features the ESP32-C3-MINI-1-N4-A, a small 2.4GHz WiFi (802.11 b/g/n) and Bluetooth® 5 module from Espressif Systems that use ESP32C3 series of SoC RISCV single-core microprocessor (ESP32-C3FN4) with 4MB flash in a single chip package. The module uses UART communication alongside several other features like the JTAG interface, module wake-up, various operational event detection, additional UART for debugging, and others.

[Learn More]

Thermo 15 Click

0

Thermo 15 Click is a Click board™ equipped with the sensor IC, which can digitize temperature measurements between -55°C and +125°C so that the temperature measurement data can be processed by the host MCU.

[Learn More]