TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142028 times)
  2. FAT32 Library (75256 times)
  3. Network Ethernet Library (59475 times)
  4. USB Device Library (49496 times)
  5. Network WiFi Library (45271 times)
  6. FT800 Library (44885 times)
  7. GSM click (31418 times)
  8. mikroSDK (30403 times)
  9. microSD click (27781 times)
  10. PID Library (27615 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

CAN FD 5 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.16

mikroSDK Library: 2.0.0.0

Category: CAN

Downloaded: 459 times

Not followed.

License: MIT license  

CAN FD 5 Click is a compact add-on board that contains CAN transceiver that supports both CAN and CAN FD protocols.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "CAN FD 5 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "CAN FD 5 Click" changes.

Do you want to report abuse regarding "CAN FD 5 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


CAN FD 5 Click

CAN FD 5 Click is a compact add-on board that contains CAN transceiver that supports both CAN and CAN FD protocols.

canfd5_click.png

Click Product page


Click library

  • Author : MikroE Team
  • Date : Sep 2020.
  • Type : UART type

Software Support

We provide a library for the CanFd5 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly form compilers IDE(recommended way), or downloaded from our LibStock, or found on mikroE github account.

Library Description

This library contains API for CanFd5 Click driver.

Standard key functions :

  • Config Object Initialization function.

    void canfd5_cfg_setup ( canfd5_cfg_t *cfg );

  • Initialization function.

    CANFD5_RETVAL canfd5_init ( canfd5_t ctx, canfd5_cfg_t cfg );

Example key functions :

  • Generic write function.

    void canfd5_generic_write ( canfd5_t ctx, char data_buf, uint16_t len );

  • Generic read function.

    int32_t canfd5_generic_read ( canfd5_t ctx, char data_buf, uint16_t max_len );

  • Set normal operating mode function.

    void canfd5_set_normal_operating_mode ( canfd5_t *ctx );

Examples Description

This is an example that demonstrates the use of the CAN FD 5 Click board.

The demo application is composed of two sections :

Application Init

Initializes the driver and enables the Click board.


void application_init ( void )
{
    log_cfg_t log_cfg;
    canfd5_cfg_t cfg;

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, "---- Application Init ----" );

    //  Click initialization.

    canfd5_cfg_setup( &cfg );
    CANFD5_MAP_MIKROBUS( cfg, MIKROBUS_1 );
    canfd5_init( &canfd5, &cfg );

    canfd5_set_normal_operating_mode( &canfd5 );
    Delay_ms ( 100 );
}

Application Task

Depending on the selected mode, it reads all the received data or sends the desired message every 2 seconds.


void application_task ( void )
{
#ifdef DEMO_APP_RECEIVER
    canfd5_process( );
#endif
#ifdef DEMO_APP_TRANSMITTER
    canfd5_generic_write( &canfd5, TEXT_TO_SEND, 8 );
    log_info( &logger, "--- The message is sent ---" );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
#endif 
} 

The full application code, and ready to use projects can be installed directly form compilers IDE(recommneded) or found on LibStock page or mikroE GitHub accaunt.

Other mikroE Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.CanFd5

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. The terminal available in all Mikroelektronika compilers, or any other terminal application of your choice, can be used to read the message.


ALSO FROM THIS AUTHOR

Illuminance click

5

Illuminance click is a light sensor suited for detecting ambient lighting (compared too conventional light sensors that are overly sensitive to infrared). It carries TSL2561, a light-to-digital converter.

[Learn More]

Proximity 17 Click

0

Proximity 17 Click is a compact add-on board that contains a close-range proximity sensing solution. This board features the TMD2635, a miniature proximity sensor module from ams AG. The TMD2635 features advanced proximity measurement in a tiny and thin optical land grid array module that incorporates a 940nm infrared vertical-cavity surface-emitting laser (IR VCSEL) factory calibrated for IR proximity response. It also offers advanced crosstalk noise cancellation through a wide range of offset adjustments through a digital fast-mode I2C interface to compensate for unwanted IR energy reflection at the sensor. This Click board™ is suitable for consumer and industrial applications.

[Learn More]

FTDI Click

0

FTDI Click is a compact add-on board that provides a high-speed USB to a serial interface converter. This board features the FT2232H, a 5th-generation high-speed USB 2.0 to a serial UART/I2C/SPI interface converter from FTDI. The entire USB protocol is handled on the chip (FTDI USB drivers required), making this board ideal for various USB applications. Besides a selectable interface and a standalone operation possibility, it also includes an EEPROM which contains the USB configuration descriptors for the FT2232H and one DA converter for additional reference in user-configurable applications.

[Learn More]