TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142118 times)
  2. FAT32 Library (75403 times)
  3. Network Ethernet Library (59567 times)
  4. USB Device Library (49551 times)
  5. Network WiFi Library (45359 times)
  6. FT800 Library (44993 times)
  7. GSM click (31486 times)
  8. mikroSDK (30567 times)
  9. microSD click (27888 times)
  10. PID Library (27635 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Accel 27 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 215 times

Not followed.

License: MIT license  

Accel 27 Click is a compact add-on board that contains an acceleration sensor. This board features the ADXL373, a three-axis MEMS ±400g accelerometer from Analog Devices. In addition to its ultra-low power consumption, the ADXL373 enables impact detection while providing system-level power reduction. It offers 12-bit output data at 200mg/LSB scale factor with a configurable host interface that supports SPI and I2C serial communication.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Accel 27 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Accel 27 Click" changes.

Do you want to report abuse regarding "Accel 27 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Accel 27 Click

Accel 27 Click is a compact add-on board that contains an acceleration sensor. This board features the ADXL373, a three-axis MEMS ±400g accelerometer from Analog Devices. In addition to its ultra-low power consumption, the ADXL373 enables impact detection while providing system-level power reduction. It offers 12-bit output data at 200mg/LSB scale factor with a configurable host interface that supports SPI and I2C serial communication.

accel27_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Dec 2022.
  • Type : I2C/SPI type

Software Support

We provide a library for the Accel 27 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Accel 27 Click driver.

Standard key functions :

  • accel27_cfg_setup Config Object Initialization function.

    void accel27_cfg_setup ( accel27_cfg_t *cfg );
  • accel27_init Initialization function.

    err_t accel27_init ( accel27_t *ctx, accel27_cfg_t *cfg );
  • accel27_default_cfg Click Default Configuration function.

    err_t accel27_default_cfg ( accel27_t *ctx );

Example key functions :

  • accel27_get_int1_pin This function returns the interrupt 1 (INT1) pin logic state.

    uint8_t accel27_get_int1_pin ( accel27_t *ctx );
  • accel27_get_axes This function reads accel X, Y, and Z axis data in g.

    err_t accel27_get_axes ( accel27_t *ctx, accel27_axes_t *axes );
  • accel27_reset_device This function performs the chip software reset.

    err_t accel27_reset_device ( accel27_t *ctx );

Example Description

This example demonstrates the use of Accel 27 Click board by reading and displaying the accelerometer data (X, Y, and Z axis) averaged from 100 samples.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    accel27_cfg_t accel27_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    accel27_cfg_setup( &accel27_cfg );
    ACCEL27_MAP_MIKROBUS( accel27_cfg, MIKROBUS_1 );
    err_t init_flag = accel27_init( &accel27, &accel27_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( ACCEL27_ERROR == accel27_default_cfg ( &accel27 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads and displays on the USB UART the accelerometer data (X, Y, and Z axis) averaged from 100 samples.

void application_task ( void )
{
    accel27_axes_t axes = { 0 };
    uint16_t cnt = 0;
    while ( cnt < NUM_OF_SAMPLES )
    {
        // Wait for data ready indication
        while ( !accel27_get_int1_pin ( &accel27 ) );

        accel27_axes_t tmp_axes;
        if ( ACCEL27_OK == accel27_get_axes ( &accel27, &tmp_axes ) )
        {
            axes.x += tmp_axes.x;
            axes.y += tmp_axes.y;
            axes.z += tmp_axes.z;
            cnt++;
        }
    }
    axes.x = axes.x / NUM_OF_SAMPLES;
    axes.y = axes.y / NUM_OF_SAMPLES;
    axes.z = axes.z / NUM_OF_SAMPLES;
    log_printf( &logger, " X: %.1f g\r\n", axes.x );
    log_printf( &logger, " Y: %.1f g\r\n", axes.y );
    log_printf( &logger, " Z: %.1f g\r\n\n", axes.z );
}

Note

This Click board should be used for high g applications of up to +-400g. It is not recommended for low g applications because of its high scale factor which is about 200 mg per LSB.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Accel27

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

USB UART 4 Click

0

USB UART 4 Click offers a USB to asynchronous serial data (UART) interface, allowing the microcontroller based designs to communicate with the personal computer, in a very simple way. It is equipped with the FT232RL, a very popular USB to UART interface IC, used on many MikroElektronika devices - both for its reliability and simplicity. USB UART Click is used for whenever there is a need to seamlessly and effortlessly interface the UART lines to a personal computer

[Learn More]

Thermo 20 click

5

Thermo 20 Click is a compact add-on board that provides an accurate temperature measurement. This board features the TSYS03, a miniature digital temperature sensor that comes up with factory calibrated, highly accurate temperature data from TE Connectivity Measurement Specialties.

[Learn More]

AudioAmp 9 Click

0

AudioAMP 9 Click is a compact add-on board reproducing input audio signals with desired volume and power levels at sound-producing output elements. This board features the PAM8124, a 10W efficient, Class-D audio power amplifier from Diodes Incorporated for driving stereo speakers in a single-ended configuration.

[Learn More]