TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141209 times)
  2. FAT32 Library (73995 times)
  3. Network Ethernet Library (58641 times)
  4. USB Device Library (48761 times)
  5. Network WiFi Library (44458 times)
  6. FT800 Library (44033 times)
  7. GSM click (30784 times)
  8. mikroSDK (29513 times)
  9. PID Library (27339 times)
  10. microSD click (27188 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Thermo 29 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 190 times

Not followed.

License: MIT license  

Thermo 29 Click is a compact add-on board for accurate temperature measurements. This board features the TMP126, a high-accuracy SPI-configurable digital temperature sensor from Texas Instruments. The TMP126 consists of an internal thermal BJT factory-calibrated sensor, 14-bit ADC, and a digital signal processor, offering a high accuracy of ±0.25°C and a temperature resolution of 0.03125°C per LSB. It also has a programmable alarm function that outputs an interrupt signal to the MCU when a specific temperature event occurs.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Thermo 29 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Thermo 29 Click" changes.

Do you want to report abuse regarding "Thermo 29 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Thermo 29 Click

Thermo 29 Click is a compact add-on board for accurate temperature measurements. This board features the TMP126, a high-accuracy SPI-configurable digital temperature sensor from Texas Instruments. The TMP126 consists of an internal thermal BJT factory-calibrated sensor, 14-bit ADC, and a digital signal processor, offering a high accuracy of ±0.25°C and a temperature resolution of 0.03125°C per LSB. It also has a programmable alarm function that outputs an interrupt signal to the MCU when a specific temperature event occurs.

thermo29_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Jan 2023.
  • Type : SPI type

Software Support

We provide a library for the Thermo 29 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Thermo 29 Click driver.

Standard key functions :

  • thermo29_cfg_setup Config Object Initialization function.

    void thermo29_cfg_setup ( thermo29_cfg_t *cfg );
  • thermo29_init Initialization function.

    err_t thermo29_init ( thermo29_t *ctx, thermo29_cfg_t *cfg );
  • thermo29_default_cfg Click Default Configuration function.

    err_t thermo29_default_cfg ( thermo29_t *ctx );

Example key functions :

  • thermo29_read_unique_id This function reads the device unique ID words (6 bytes in total).

    err_t thermo29_read_unique_id ( thermo29_t *ctx, uint16_t *unique_id );
  • thermo29_get_alert_pin This function returns the alert pin logic state.

    uint8_t thermo29_get_alert_pin ( thermo29_t *ctx );
  • thermo29_read_temperature This function reads the temperature measurement in degrees Celsius.

    err_t thermo29_read_temperature ( thermo29_t *ctx, float *temperature );

Example Description

This example demonstrates the use of Thermo 29 Click board by reading and displaying the temperature measurements.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger, and performs the Click default configuration which enables continuous conversion and sets the conversion rate to 1 Hz with a data ready flag enabled on the alert pin. After that, reads and displays the device 48-bit unique ID.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    thermo29_cfg_t thermo29_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    thermo29_cfg_setup( &thermo29_cfg );
    THERMO29_MAP_MIKROBUS( thermo29_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == thermo29_init( &thermo29, &thermo29_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( THERMO29_ERROR == thermo29_default_cfg ( &thermo29 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    uint16_t unique_id[ 3 ];
    if ( THERMO29_OK == thermo29_read_unique_id ( &thermo29, unique_id ) )
    {
        log_printf ( &logger, " Device Unique ID: 0x%.2X%.2X%.2X\r\n", 
                     unique_id[ 0 ], unique_id[ 1 ], unique_id[ 2 ] );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Waits for the data ready alert flag, then reads the temperature measurement in Celsius and displays the results on the USB UART approximately once per second.

void application_task ( void )
{
    float temperature;
    // Wait for the data ready alert flag
    while ( thermo29_get_alert_pin ( &thermo29 ) );

    if ( ( THERMO29_OK == thermo29_clear_alert_status ( &thermo29 ) ) && 
         ( THERMO29_OK == thermo29_read_temperature ( &thermo29, &temperature ) ) )
    {
        log_printf ( &logger, " Temperature: %.2f degC\r\n\n", temperature );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Thermo29

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Temp-Hum 12 click

5

Temp-Hum 12 click is a smart environmental temperature and humidity sensor Click board, packed with features which allow easy and simple integration into any design that requires accurate and reliable humidity and temperature measurements.

[Learn More]

Current 2 click

8

The Current 2 click is an accurate current sensing Click board suitable for a very accurate measurement of the current through the load. It utilizes the high-side current sensing approach, which has a few advantages over the low-side current sensing.

[Learn More]

ReRAM 2 Click

0

ReRAM 2 Click is a compact add-on board containing highly reliable resistive random-access memory. This board features the MB85AS8MT, an 8Mbit memory organized as 1,048,576 words of 8 bits from Fujitsu Semiconductor. The MB85AS8MT uses the resistance-variable memory process and silicon-gate CMOS process technologies to form nonvolatile memory cells. This SPI configurable ReRAM can withstand many write cycles (1x106 rewrite operations), has a data retention period greater than ten years, and can read and write to random addresses with very negligible delay. This Click board™ is ideal as a nonvolatile storage media or temporary RAM expansion for storing variables in any embedded application that requires rapid writes and unlimited endurance.

[Learn More]