TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (388 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140362 times)
  2. FAT32 Library (72761 times)
  3. Network Ethernet Library (57875 times)
  4. USB Device Library (48023 times)
  5. Network WiFi Library (43608 times)
  6. FT800 Library (43037 times)
  7. GSM click (30173 times)
  8. mikroSDK (28848 times)
  9. PID Library (27078 times)
  10. microSD click (26605 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 27 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 108 times

Not followed.

License: MIT license  

Brushless 27 Click is a compact add-on board that controls DC brushless motors with any MCU. This board features the TMC6300, a power driver for BLDC/PMSM motors from TRINAMIC. It is a highly efficient low voltage, zero standby driver for 3-phase BLDC/PMSM motors with up to 2A peak current.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 27 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 27 Click" changes.

Do you want to report abuse regarding "Brushless 27 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Brushless 27 Click

Brushless 27 Click is a compact add-on board that controls DC brushless motors with any MCU. This board features the TMC6300, a power driver for BLDC/PMSM motors from TRINAMIC. It is a highly efficient low voltage, zero standby driver for 3-phase BLDC/PMSM motors with up to 2A peak current.

brushless27_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Sep 2023.
  • Type : I2C type

Software Support

We provide a library for the Brushless 27 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Brushless 27 Click driver.

Standard key functions :

  • brushless27_cfg_setup Config Object Initialization function.

    void brushless27_cfg_setup ( brushless27_cfg_t *cfg );
  • brushless27_init Initialization function.

    err_t brushless27_init ( brushless27_t *ctx, brushless27_cfg_t *cfg );
  • brushless27_default_cfg Click Default Configuration function.

    err_t brushless27_default_cfg ( brushless27_t *ctx );

Example key functions :

  • brushless27_set_pins Brushless 27 set pins function.

    err_t brushless27_set_pins ( brushless27_t *ctx, uint8_t set_mask, uint8_t clr_mask );
  • brushless27_set_trap_com_state Brushless 27 set trapezoidal com state function.

    err_t brushless27_set_trap_com_state ( brushless27_t *ctx, uint8_t state );
  • brushless27_drive_motor Brushless 27 drive motor function.

    err_t brushless27_drive_motor ( brushless27_t *ctx, uint8_t dir, uint8_t speed, uint32_t time_ms );

Example Description

This example demonstrates the use of the Brushless 27 Click board by driving the motor in both directions at different speeds.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless27_cfg_t brushless27_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    brushless27_cfg_setup( &brushless27_cfg );
    BRUSHLESS27_MAP_MIKROBUS( brushless27_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == brushless27_init( &brushless27, &brushless27_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( BRUSHLESS27_ERROR == brushless27_default_cfg ( &brushless27 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor in both directions and changes the motor speed approximately every 2 seconds. The driving direction and speed will be displayed on the USB UART.

void application_task ( void ) 
{
    log_printf ( &logger, "\r\n Driving motor clockwise \r\n" );
    for ( uint8_t speed = BRUSHLESS27_SPEED_MIN; speed <= BRUSHLESS27_SPEED_MAX; speed += 20 )
    {
        log_printf ( &logger, " Speed gain: %u\r\n", ( uint16_t ) speed );
        if ( BRUSHLESS27_OK != brushless27_drive_motor ( &brushless27, BRUSHLESS27_DIR_CW, speed, 2000 ) )
        {
            log_error ( &logger, " Drive motor " );
        }
    }
    Delay_ms ( 1000 );

    log_printf ( &logger, "\r\n Driving motor counter-clockwise \r\n" );
    for ( uint8_t speed = BRUSHLESS27_SPEED_MIN; speed <= BRUSHLESS27_SPEED_MAX; speed += 20 )
    {
        log_printf ( &logger, " Speed gain: %u\r\n", ( uint16_t ) speed );
        if ( BRUSHLESS27_OK != brushless27_drive_motor ( &brushless27, BRUSHLESS27_DIR_CCW, speed, 2000 ) )
        {
            log_error ( &logger, " Drive motor " );
        }
    }
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless27

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

LR 14 Click

0

LR 14 Click is a compact add-on board for low-power, long-range wireless communication in IoT networks. This board features the RAK3172, a Class A/B/C LoRaWAN 1.0.3-compliant module from RAKwireless Technology, featuring the STM32WLE5CC ARM Cortex-M4 32-bit chip. This board supports LoRaWAN and LoRa Point-to-Point communication modes and integrates multiple frequency bands for flexibility across various regions. Key features include UART, SPI, and I2C interfaces, a USB Type-C connector for power and configuration, and a rechargeable battery option for standalone operation.

[Learn More]

Wheatstone Click

0

Wheatstone Click is a measurement Click board™ which utilizes a Wheatstone bridge circuit onboard, in order to precisely measure the resistance of an external element. Besides the wheatstone bridge circuit, this Click board™ also utilizes MAX4208 – an ultra-low offset/drift, precision instrumentation amplifier, from Maxim Integrated.

[Learn More]

Flash 6 Click

0

The Flash 6 Click based on W25Q128JV (128M-bit) flash memory from Winbond provides a storage solution for systems with limited space, pins and power.

[Learn More]