TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142090 times)
  2. FAT32 Library (75348 times)
  3. Network Ethernet Library (59519 times)
  4. USB Device Library (49539 times)
  5. Network WiFi Library (45327 times)
  6. FT800 Library (44956 times)
  7. GSM click (31459 times)
  8. mikroSDK (30488 times)
  9. microSD click (27819 times)
  10. PID Library (27628 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 25 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 295 times

Not followed.

License: MIT license  

Brushless 25 Click is a compact add-on board that controls brushless DC (three-phase BLDC) motors with any MCU. This board features the MCT8316A, a high-speed sensorless trapezoidal control integrated FET BLDC driver from Texas Instruments. It provides three individually controllable drivers intended to drive a three-phase BLDC motor, solenoids, or other loads.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 25 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 25 Click" changes.

Do you want to report abuse regarding "Brushless 25 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Brushless 25 Click

Brushless 25 Click is a compact add-on board that controls brushless DC (three-phase BLDC) motors with any MCU. This board features the MCT8316A, a high-speed sensorless trapezoidal control integrated FET BLDC driver from Texas Instruments. It provides three individually controllable drivers intended to drive a three-phase BLDC motor, solenoids, or other loads.

brushless25_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jan 2023.
  • Type : I2C/SPI type

Software Support

We provide a library for the Brushless 25 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Brushless 25 Click driver.

Standard key functions :

  • brushless25_cfg_setup Config Object Initialization function.

    void brushless25_cfg_setup ( brushless25_cfg_t *cfg );
  • brushless25_init Initialization function.

    err_t brushless25_init ( brushless25_t *ctx, brushless25_cfg_t *cfg );
  • brushless25_default_cfg Click Default Configuration function.

    err_t brushless25_default_cfg ( brushless25_t *ctx );

Example key functions :

  • brushless25_register_write Brushless 25 data writing function.

    err_t brushless25_register_write ( brushless25_t *ctx, uint16_t reg, uint32_t data_in );
  • brushless25_register_read Brushless 25 data reading function.

    err_t brushless25_register_read ( brushless25_t *ctx, uint16_t reg, uint32_t *data_out );
  • brushless25_set_speed_value Brushless 25 set speed function.

    err_t brushless25_set_speed_value ( brushless25_t *ctx, float spd_val );

Example Description

Application example shows the device's capability of controlling the brushless motor speed and state of the driver.

The demo application is composed of two sections :

Application Init

Initializes the driver, sets the device into slow start mode and sets the speed of the motor to 30%.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless25_cfg_t brushless25_cfg;  /**< Click config object. */
    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    brushless25_cfg_setup( &brushless25_cfg );
    BRUSHLESS25_MAP_MIKROBUS( brushless25_cfg, MIKROBUS_1 );
    err_t init_flag = brushless25_init( &brushless25, &brushless25_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( BRUSHLESS25_ERROR == brushless25_default_cfg ( &brushless25 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    brushless25_set_speed_value( &brushless25, ( speed_val * 10 ) );

    log_info( &logger, " Application Task " );
}

Application Task

This example is taking track of the state of the driver and motor, as well as its voltage and speed which is changing from 30% to 100%, and logging it onto the USB UART terminal

void application_task ( void )
{
    uint32_t tmp_data = 0;
    uint16_t spd_data = 0;
    uint16_t voltage_data = 0;


    brushless25_register_read( &brushless25, BRUSHLESS25_SYS_STATUS2_REG, &tmp_data );
    tmp_data &= BRUSHLESS25_STATE_MASK; 

    switch ( tmp_data )
    {
        case BRUSHLESS25_STATE_SYSTEM_IDLE:
        {
            log_info( &logger, " System is idle " );
            break;
        }
        case BRUSHLESS25_STATE_MOTOR_START:
        {
            log_info( &logger, " Motor is starting " );
            break;
        }
        case BRUSHLESS25_STATE_MOTOR_RUN:
        {
            log_info( &logger, " Motor is running" );
            if ( ( speed_val < 10 ) && ( sw_data == 0 ) )
            {
                speed_val++;
                if ( speed_val == 10 )
                {
                    sw_data = 1;
                }
            }
            else if ( ( speed_val > 3 ) && ( sw_data == 1 ) )
            {
                speed_val--;
                if ( speed_val == 3 )
                {
                    sw_data = 0;
                }
            }

            break;
        }
        case BRUSHLESS25_STATE_MOTOR_ALIGN:
        {
            log_info( &logger, " Motor is aligning " );
            break;
        }
        case BRUSHLESS25_STATE_MOTOR_IDLE:
        {
            log_info( &logger, " Motor is in idle mode " );
            break;
        }
        case BRUSHLESS25_STATE_MOTOR_STOP:
        {
            log_info( &logger, " Motor is stoped " );
            brushless25_set_brake_state( &brushless25, BRUSHLESS25_BRAKE_ON );
            break;
        }
        case BRUSHLESS25_STATE_FAULT:
        {
            log_error( &logger, " Fault accured " );
            brushless25_set_brake_state( &brushless25, BRUSHLESS25_BRAKE_ON );
            for ( ; ; );
        }
        case BRUSHLESS25_STATE_MOTOR_BRAKE:
        {
            log_info( &logger, " Motor brake is on " );
            brushless25_set_brake_state( &brushless25, BRUSHLESS25_BRAKE_OFF );
            break;
        }
        default:
        {
            break;
        }
    }

    brushless25_set_speed_value( &brushless25, ( speed_val * 10 ) );
    Delay_ms ( 1000 );
    brushless25_register_read( &brushless25, BRUSHLESS25_SYS_STATUS2_REG, &tmp_data );
    spd_data = ( uint16_t ) tmp_data / 10;
    brushless25_register_read( &brushless25, BRUSHLESS25_SYS_STATUS1_REG, &tmp_data );
    voltage_data = ( ( uint16_t ) ( tmp_data >> 16 ) / 10 );

    log_printf( &logger, " Motor speed: %d Hz \r\n", spd_data );
    log_printf( &logger, " Motor voltage: %d V \r\n", voltage_data );
    log_printf( &logger, " --------------------- \r\n" );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless25

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

HOD CAP Click

0

HOD CAP Click is a compact add-on board that adds a smart sensing solution to your application. This board features the AS8579, a capacitive sensor from ams OSRAM. The sensor features I/Q signal demodulation, parasitic influences from cable, and PCB protection. It has ten sense outputs, five of which come with sensing line filter circuits. This Click board™ makes the perfect solution for the development of autonomous driving applications such as hands-on steering wheel detection and detection of any human presence inside a vehicle or outside of the vehicle, e.g., for automatic trunk opener and more.

[Learn More]

Air Quality 8 Click

0

Air quality 8 Click is a compact add-on board containing a best-in-class air-quality sensing solution. This board features the ZMOD4510, a fully calibrated digital sensor solution that detects air quality in various indoor and outdoor applications from Renesas. The ZMOD4510 comes with selective ozone measurement capabilities, offering visibility into the air quality in users' environments for a personalized experience. This Click board™ is an I2C configurable and characterized by outstanding long-term stability and lifetime. Many additional features such as low power consumption, wide NO2 and O3 detection range, and high sensitivity make this Click board™ an excellent choice for detecting unhealthy conditions in outdoor air, such as personal air-quality monitor, HVAC, and other various air quality-related applications.

[Learn More]

Altitude 5 Click

0

Altitude 5 Click is a compact add-on board allowing high-resolution barometric pressure measurement. This board features the KP236, an analog barometric air pressure sensor based on a capacitive principle from Infineon Technologies. The KP236 is primarily developed for measuring barometric air pressure but can also be used in other application fields. It is surface micro-machined with a monolithic integrated signal conditioning circuit implemented in BiCMOS technology. The calibrated transfer function converts pressure into an analog output signal in a range of 40kPa to 115kPa. However, the choice of signal processing is up to the user; more precisely, the user can process the output signal in analog or digital form. The high accuracy and the high sensitivity of the KP236 make this Click board™ suitable for advanced automotive applications and industrial and consumer applications.

[Learn More]