TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141514 times)
  2. FAT32 Library (74401 times)
  3. Network Ethernet Library (58914 times)
  4. USB Device Library (48963 times)
  5. Network WiFi Library (44727 times)
  6. FT800 Library (44292 times)
  7. GSM click (31003 times)
  8. mikroSDK (29853 times)
  9. PID Library (27432 times)
  10. microSD click (27410 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 25 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 257 times

Not followed.

License: MIT license  

Brushless 25 Click is a compact add-on board that controls brushless DC (three-phase BLDC) motors with any MCU. This board features the MCT8316A, a high-speed sensorless trapezoidal control integrated FET BLDC driver from Texas Instruments. It provides three individually controllable drivers intended to drive a three-phase BLDC motor, solenoids, or other loads.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 25 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 25 Click" changes.

Do you want to report abuse regarding "Brushless 25 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Brushless 25 Click

Brushless 25 Click is a compact add-on board that controls brushless DC (three-phase BLDC) motors with any MCU. This board features the MCT8316A, a high-speed sensorless trapezoidal control integrated FET BLDC driver from Texas Instruments. It provides three individually controllable drivers intended to drive a three-phase BLDC motor, solenoids, or other loads.

brushless25_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jan 2023.
  • Type : I2C/SPI type

Software Support

We provide a library for the Brushless 25 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Brushless 25 Click driver.

Standard key functions :

  • brushless25_cfg_setup Config Object Initialization function.

    void brushless25_cfg_setup ( brushless25_cfg_t *cfg );
  • brushless25_init Initialization function.

    err_t brushless25_init ( brushless25_t *ctx, brushless25_cfg_t *cfg );
  • brushless25_default_cfg Click Default Configuration function.

    err_t brushless25_default_cfg ( brushless25_t *ctx );

Example key functions :

  • brushless25_register_write Brushless 25 data writing function.

    err_t brushless25_register_write ( brushless25_t *ctx, uint16_t reg, uint32_t data_in );
  • brushless25_register_read Brushless 25 data reading function.

    err_t brushless25_register_read ( brushless25_t *ctx, uint16_t reg, uint32_t *data_out );
  • brushless25_set_speed_value Brushless 25 set speed function.

    err_t brushless25_set_speed_value ( brushless25_t *ctx, float spd_val );

Example Description

Application example shows the device's capability of controlling the brushless motor speed and state of the driver.

The demo application is composed of two sections :

Application Init

Initializes the driver, sets the device into slow start mode and sets the speed of the motor to 30%.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless25_cfg_t brushless25_cfg;  /**< Click config object. */
    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    brushless25_cfg_setup( &brushless25_cfg );
    BRUSHLESS25_MAP_MIKROBUS( brushless25_cfg, MIKROBUS_1 );
    err_t init_flag = brushless25_init( &brushless25, &brushless25_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( BRUSHLESS25_ERROR == brushless25_default_cfg ( &brushless25 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    brushless25_set_speed_value( &brushless25, ( speed_val * 10 ) );

    log_info( &logger, " Application Task " );
}

Application Task

This example is taking track of the state of the driver and motor, as well as its voltage and speed which is changing from 30% to 100%, and logging it onto the USB UART terminal

void application_task ( void )
{
    uint32_t tmp_data = 0;
    uint16_t spd_data = 0;
    uint16_t voltage_data = 0;


    brushless25_register_read( &brushless25, BRUSHLESS25_SYS_STATUS2_REG, &tmp_data );
    tmp_data &= BRUSHLESS25_STATE_MASK; 

    switch ( tmp_data )
    {
        case BRUSHLESS25_STATE_SYSTEM_IDLE:
        {
            log_info( &logger, " System is idle " );
            break;
        }
        case BRUSHLESS25_STATE_MOTOR_START:
        {
            log_info( &logger, " Motor is starting " );
            break;
        }
        case BRUSHLESS25_STATE_MOTOR_RUN:
        {
            log_info( &logger, " Motor is running" );
            if ( ( speed_val < 10 ) && ( sw_data == 0 ) )
            {
                speed_val++;
                if ( speed_val == 10 )
                {
                    sw_data = 1;
                }
            }
            else if ( ( speed_val > 3 ) && ( sw_data == 1 ) )
            {
                speed_val--;
                if ( speed_val == 3 )
                {
                    sw_data = 0;
                }
            }

            break;
        }
        case BRUSHLESS25_STATE_MOTOR_ALIGN:
        {
            log_info( &logger, " Motor is aligning " );
            break;
        }
        case BRUSHLESS25_STATE_MOTOR_IDLE:
        {
            log_info( &logger, " Motor is in idle mode " );
            break;
        }
        case BRUSHLESS25_STATE_MOTOR_STOP:
        {
            log_info( &logger, " Motor is stoped " );
            brushless25_set_brake_state( &brushless25, BRUSHLESS25_BRAKE_ON );
            break;
        }
        case BRUSHLESS25_STATE_FAULT:
        {
            log_error( &logger, " Fault accured " );
            brushless25_set_brake_state( &brushless25, BRUSHLESS25_BRAKE_ON );
            for ( ; ; );
        }
        case BRUSHLESS25_STATE_MOTOR_BRAKE:
        {
            log_info( &logger, " Motor brake is on " );
            brushless25_set_brake_state( &brushless25, BRUSHLESS25_BRAKE_OFF );
            break;
        }
        default:
        {
            break;
        }
    }

    brushless25_set_speed_value( &brushless25, ( speed_val * 10 ) );
    Delay_ms ( 1000 );
    brushless25_register_read( &brushless25, BRUSHLESS25_SYS_STATUS2_REG, &tmp_data );
    spd_data = ( uint16_t ) tmp_data / 10;
    brushless25_register_read( &brushless25, BRUSHLESS25_SYS_STATUS1_REG, &tmp_data );
    voltage_data = ( ( uint16_t ) ( tmp_data >> 16 ) / 10 );

    log_printf( &logger, " Motor speed: %d Hz \r\n", spd_data );
    log_printf( &logger, " Motor voltage: %d V \r\n", voltage_data );
    log_printf( &logger, " --------------------- \r\n" );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless25

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

7-SEG 2 Click

0

7-SEG 2 Click is a compact add-on board that represents an easy solution for adding a numeric or hexadecimal display to your application. This board features the LDT-M2804RI, a three-digit seven-segment display from Lumex. The display has a 0.28” height, red LED segments, gray faces, and white diffused segments. All three digits come with a following dot point that can be used as a decimal point in displaying the number values.

[Learn More]

Clock Gen 5 click

5

Clock Gen 5 Click is a compact add-on board that contains a digital programmable oscillator solution. This board features the LTC6903, a low-power self-contained digital frequency source providing a precision frequency from 1kHz to 68MHz set through a 3-wire SPI digital interface from Analog Devices.

[Learn More]

Temp-Log Click

0

Temp-Log Click is a precise ambient temperature measurement device, equipped with 8Kbit (1024 bytes) of EEPROM memory, which can be used to permanently store system configuration or log application specific or user preference data. This Click covers a range of temperatures from -55°C to +125°C with the highest accuracy of ±0.5°C, in the range of 0°C to 85°C. The device can also send an ALERT signal to the INT pin of the mikroBUS™ every time programmed temperature thresholds are reached.

[Learn More]