TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139253 times)
  2. FAT32 Library (71751 times)
  3. Network Ethernet Library (57122 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28078 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

N-PLC Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: PLC

Downloaded: 128 times

Not followed.

License: MIT license  

N-PLC Click is a compact add-on board that uses existing electrical power lines to transmit data signals. This board features the SM2400, an advanced multi-standard Narrow-band Power Line Communication (N-PLC) modem from Semitech. The SM2400 features a dual-core architecture, a DSP core for N-PLC modulations, and a 32-bit core for running protocols for superior communication performance and flexibility for various open standards and customized implementations. It includes firmware options for IEEE 1901.2 compliant PHY and MAC layers, a 6LoWPAN data link layer, and special modes for industrial IoT applications. In addition to the ability to accept signals from another PLC modem or the power line communication AC coupling circuit, this board also has a handful of other features, such as a selectable interface and power supply, firmware update capabilities, LED indicators, and many others.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "N-PLC Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "N-PLC Click" changes.

Do you want to report abuse regarding "N-PLC Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


N-PLC Click

N-PLC Click is a compact add-on board that uses existing electrical power lines to transmit data signals. This board features the SM2400, an advanced multi-standard Narrow-band Power Line Communication (N-PLC) modem from Semitech. The SM2400 features a dual-core architecture, a DSP core for N-PLC modulations, and a 32-bit core for running protocols for superior communication performance and flexibility for various open standards and customized implementations. It includes firmware options for IEEE 1901.2 compliant PHY and MAC layers, a 6LoWPAN data link layer, and special modes for industrial IoT applications. In addition to the ability to accept signals from another PLC modem or the power line communication AC coupling circuit, this board also has a handful of other features, such as a selectable interface and power supply, firmware update capabilities, LED indicators, and many others.

nplc_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Mar 2023.
  • Type : UART type

Software Support

We provide a library for the N-PLC Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for N-PLC Click driver.

Standard key functions :

  • nplc_cfg_setup Config Object Initialization function.

    void nplc_cfg_setup ( nplc_cfg_t *cfg );
  • nplc_init Initialization function.

    err_t nplc_init ( nplc_t *ctx, nplc_cfg_t *cfg );
  • nplc_default_cfg Click Default Configuration function.

    err_t nplc_default_cfg ( nplc_t *ctx );

Example key functions :

  • nplc_set_mode This function sets operation mode to command or data.

    void nplc_set_mode ( nplc_t *ctx, uint8_t mode );
  • nplc_generic_write This function writes a desired number of data bytes by using UART serial interface.

    err_t nplc_generic_write ( nplc_t *ctx, char *data_in, uint16_t len );
  • nplc_generic_read This function reads a desired number of data bytes by using UART serial interface.

    err_t nplc_generic_read ( nplc_t *ctx, char *data_out, uint16_t len );

Example Description

This example demonstrates the use of an N-PLC Click boards by showing the communication between the two Click boards configured as a receiver and transmitter.

The demo application is composed of two sections :

Application Init

Initializes the driver, resets the Click board to default config, displays the firmware version and switches to data operation mode. After that displays the selected application mode and sends an initial message in case of transmitter mode.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    nplc_cfg_t nplc_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    nplc_cfg_setup( &nplc_cfg );
    NPLC_MAP_MIKROBUS( nplc_cfg, MIKROBUS_1 );
    if ( UART_ERROR == nplc_init( &nplc, &nplc_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    } 
    nplc_process( );
    nplc_clear_app_buf( );

    log_printf( &logger, " - HW reset -\r\n" );
    nplc_hw_reset ( &nplc );
    nplc_display_rsp ( );

    log_printf( &logger, " - Go to command mode -\r\n" );
    nplc_set_mode ( &nplc, NPLC_MODE_COMMAND );
    nplc_display_rsp ( );

    log_printf( &logger, " - Factory reset -\r\n" );
    nplc_factory_reset ( &nplc );
    nplc_display_rsp ( );

    log_printf( &logger, " - Reboot -\r\n" );
    nplc_sw_reset ( &nplc );
    nplc_display_rsp ( );

    log_printf( &logger, " - Go to command mode -\r\n" );
    nplc_set_mode ( &nplc, NPLC_MODE_COMMAND );
    nplc_display_rsp ( );

    log_printf( &logger, " - Show firmware version -\r\n" );
    nplc_firmware_version ( &nplc );
    nplc_display_rsp ( );

    log_printf( &logger, " - Go to data mode -\r\n" );
    nplc_set_mode ( &nplc, NPLC_MODE_DATA );

#ifdef DEMO_APP_TRANSMITTER
    log_printf( &logger, " Application Mode: Transmitter\r\n" );

    log_printf( &logger, " Sending initial message: %s", ( char * ) DEMO_TEXT_MESSAGE );
    nplc_generic_write( &nplc, DEMO_TEXT_MESSAGE, strlen ( DEMO_TEXT_MESSAGE ) );
    log_printf( &logger, "\r\n--------------------------------\r\n" );
    Delay_ms ( 1000 ); 
#else
    log_printf( &logger, " Application Mode: Receiver\r\n" );
#endif   
    log_info( &logger, " Application Task " );
}

Application Task

Reads all the received data and echoes them back to the transmitter. The received and echoed messages will be displayed on the USB UART.

void application_task ( void )
{
    nplc_process ( );
    if ( app_buf_len > 0 ) 
    {
        Delay_ms ( 500 );
        nplc_process( );
        log_printf( &logger, " Received message: %s", app_buf );
        log_printf( &logger, "\r\n--------------------------------\r\n" );
        Delay_ms ( 500 );
        log_printf( &logger, " Sending echo response: %s", app_buf );
        nplc_generic_write( &nplc, app_buf, app_buf_len );
        log_printf( &logger, "\r\n--------------------------------\r\n\n" );
        nplc_clear_app_buf( );
        Delay_ms ( 1000 ); 
    }
}

Note

Once both devices are programmed, one as a receiver and the other as a transmitter, you will need to reset the transmitter board in order to start the communication by sending an initial message.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.NPLC

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

GSR Click

0

GSR Click can be used to measure the electrodermal activity (EDA) of the human body, also known as the galvanic skin response (GSR).

[Learn More]

IR reflect Click

0

IR reflect Click carries a GP2S700HCP reflective photointerrupter and an onboard potentiometer. On this type of photointerrupter the infrared emitter and receiver are facing the same direction.

[Learn More]

Pressure 21 Click

0

Pressure 21 Click is a compact add-on board that contains a board-mount pressure sensor. This board features the BMP581, an absolute barometric pressure sensor from Bosch Sensortec. The BMP581 provides a relative accuracy of ±6Pa and typical absolute accuracy of ±30Pa with ultra-low noise, low power consumption, and temperature stability alongside programmable output: temperature-only or both pressure and temperature (pressure-only is not supported). It converts output data into a 24-bit digital value and sends the information via a configurable host interface that supports SPI and I2C serial communications. It measures pressure from 30kPa up to 125kPa over a wide operating temperature range.

[Learn More]