TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141598 times)
  2. FAT32 Library (74613 times)
  3. Network Ethernet Library (59116 times)
  4. USB Device Library (49133 times)
  5. Network WiFi Library (44916 times)
  6. FT800 Library (44435 times)
  7. GSM click (31106 times)
  8. mikroSDK (29969 times)
  9. microSD click (27523 times)
  10. PID Library (27506 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

USB-C Power Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: USB-C PD

Downloaded: 239 times

Not followed.

License: MIT license  

USB-C Power Click is a compact add-on board that provides a quick and easy way to supply power without carrying multiple adapters or cables. This board features the TPS25750S, a highly integrated USB Type-C and Power Delivery (PD) controller with integrated power switches optimized for power applications from Texas Instruments. The TPS25750S integrates fully managed power paths (5V/3A with 36mΩ sourcing switch) with robust protection (reverse and inrush current as well as over/under voltage protection) and control for external battery charger IC for a complete USB-C PD solution. Besides web-based GUI and pre-configured firmware, the TPS25750S also has some GPIOs and LED indicators that are user-defined for either status or control information.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "USB-C Power Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "USB-C Power Click" changes.

Do you want to report abuse regarding "USB-C Power Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


USB-C Power Click

USB-C Power Click is a compact add-on board that provides a quick and easy way to supply power without carrying multiple adapters or cables. This board features the TPS25750S, a highly integrated USB Type-C and Power Delivery (PD) controller with integrated power switches optimized for power applications from Texas Instruments. The TPS25750S integrates fully managed power paths (5V/3A with 36mΩ sourcing switch) with robust protection (reverse and inrush current as well as over/under voltage protection) and control for external battery charger IC for a complete USB-C PD solution. Besides web-based GUI and pre-configured firmware, the TPS25750S also has some GPIOs and LED indicators that are user-defined for either status or control information.

usbcpower_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Mar 2023.
  • Type : I2C type

Software Support

We provide a library for the USB-C Power Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for USB-C Power Click driver.

Standard key functions :

  • usbcpower_cfg_setup Config Object Initialization function.

    void usbcpower_cfg_setup ( usbcpower_cfg_t *cfg );
  • usbcpower_init Initialization function.

    err_t usbcpower_init ( usbcpower_t *ctx, usbcpower_cfg_t *cfg );
  • usbcpower_default_cfg Click Default Configuration function.

    err_t usbcpower_default_cfg ( usbcpower_t *ctx );

Example key functions :

  • usbcpower_get_status USB-C Power gets status function.

    err_t usbcpower_get_status ( usbcpower_t *ctx, usbcpower_status_t *status )
  • usbcpower_get_pwr_status USB-C Power gets PWR status function.

    err_t usbcpower_get_pwr_status ( usbcpower_t *ctx, usbcpower_pwr_status_t *pwr_status );
  • usbcpower_start_patch_burst_mode USB-C Power starts the patch burst mode function.

    err_t usbcpower_start_patch_burst_mode ( usbcpower_t *ctx, usbcpower_pbms_cfg_t pbms_cfg, uint32_t *response );

Example Description

This example demonstrates the use of the USB-C Power Click board™ by configuring the PD controller to attempt to become a Power Source.

The demo application is composed of two sections :

Application Init

The initialization of I2C module, log UART, and additional pins. After the driver init, the app executes a default configuration, depending on PD Device Mode, the app performs the patch bundle update tasks for loading a patch bundle in burst mode to the PD controller.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    usbcpower_cfg_t usbcpower_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    usbcpower_cfg_setup( &usbcpower_cfg );
    USBCPOWER_MAP_MIKROBUS( usbcpower_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == usbcpower_init( &usbcpower, &usbcpower_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( USBCPOWER_ERROR == usbcpower_default_cfg ( &usbcpower ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    usbcpower_set_patch_mode( &usbcpower, &response );
    if ( USBCPOWER_RSP_OK != response )
    {
        log_error( &logger, " Go to Patch Mode." );
        for ( ; ; );
    }

    uint8_t device_mode[ 6 ] = { 0 };
    usbcpower_get_device_mode( &usbcpower, &device_mode );
    log_printf( &logger, " PD Device Mode: %s\r\n", &device_mode[ 1 ] );
    log_printf( &logger, "-----------------------------\r\n" );
    Delay_ms ( 100 );

    log_info( &logger, " Application Task " );
    log_printf( &logger, "-----------------------------\r\n" );
    Delay_ms ( 100 );
}

Application Task

The application display status information about the PD controller data role and power of the connection. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void ) 
{
    if ( USBCPOWER_OK == usbcpower_get_status( &usbcpower, &status ) )
    {
        if ( USBCPOWER_OK == usbcpower_get_pwr_status( &usbcpower, &pwr_status ) )
        {
            usbcpower_display_status( );
            log_printf( &logger, "- - - - - - - - - - - - - - -\r\n" );
            usbcpower_display_pwr_status( );
            log_printf( &logger, "-----------------------------\r\n" );
        }
    }
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

Note

For the advanced configuration, use the TPS25750 Application Customization Tool: https://dev.ti.com/gallery/search/TPS25750_Application_Customization_Tool

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.USBCPower

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

H-Bridge 10 Click

0

H-Bridge 10 Click is a compact add-on board containing H-bridge outputs that let you control a DC motor to go backward or forward. This board features the MP6523, a triple, half-bridge, DMOS, output driver with integrated power MOSFETs that can drive up to three different loads from Monolithic Power Systems (MPS). The MP6523 is rated for an operating voltage range from 7V to 28V. It is SPI-configurable and has various diagnostic functions. Complete protection features include short-circuit protection (SCP), under-voltage protection (UVP), and thermal shutdown, alongside an onboard power supply existence-check circuit. This Click board™ is suitable as a multiple brushed DC motor driver for driving various loads in automotive and industrial applications, and more.

[Learn More]

Gyro 2 click

6

The Gyro 2 click is a three-axis digital angular rate sensor which can sense the angular movement and velocity in three perpendicular axes. The Click board is equipped with the FXAS21002C, a three-axis integrated angular rate gyroscope.

[Learn More]

Thermostat Click

0

If you need a temperature sensor and relay in one device, you should look no further than Thermostat Click. It can be used to measure environmental temperature and to directly switch ON/OFF cooling and heating devices, performing all the functions of a thermostat.

[Learn More]