TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142047 times)
  2. FAT32 Library (75269 times)
  3. Network Ethernet Library (59483 times)
  4. USB Device Library (49503 times)
  5. Network WiFi Library (45278 times)
  6. FT800 Library (44900 times)
  7. GSM click (31422 times)
  8. mikroSDK (30425 times)
  9. microSD click (27783 times)
  10. PID Library (27619 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Thermo K 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Temperature & humidity

Downloaded: 239 times

Not followed.

License: MIT license  

Thermo K 3 Click is a compact add-on board that provides accurate temperature measurements with a thermocouple probe. This board features the MAX6675, a cold-junction-compensated K-thermocouple-to-digital converter from Analog Devices. With the versatile type-K probe, this board enables precise temperature measurements of up to +700°C in 12-bit (0.25°C) resolution. This board can measure temperatures as high as +1024°C but with less precision. It features cold-junction compensation sensing and correction and open thermocouple detection.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Thermo K 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Thermo K 3 Click" changes.

Do you want to report abuse regarding "Thermo K 3 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Thermo K 3 Click

Thermo K 3 Click is a compact add-on board that provides accurate temperature measurements with a thermocouple probe. This board features the MAX6675, a cold-junction-compensated K-thermocouple-to-digital converter from Analog Devices. With the versatile type-K probe, this board enables precise temperature measurements of up to +700°C in 12-bit (0.25°C) resolution. This board can measure temperatures as high as +1024°C but with less precision. It features cold-junction compensation sensing and correction and open thermocouple detection.

thermok3_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Apr 2023.
  • Type : SPI type

Software Support

We provide a library for the Thermo K 3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Thermo K 3 Click driver.

Standard key functions :

  • thermok3_cfg_setup Config Object Initialization function.

    void thermok3_cfg_setup ( thermok3_cfg_t *cfg );
  • thermok3_init Initialization function.

    err_t thermok3_init ( thermok3_t *ctx, thermok3_cfg_t *cfg );

Example key functions :

  • thermok3_read_data This function reads a raw data output by using the SPI serial interface.

    err_t thermok3_read_data ( thermok3_t *ctx, uint16_t *data_out );
  • thermok3_read_temperature This function reads a raw data output and converts it to temperature in Celsius.

    err_t thermok3_read_temperature ( thermok3_t *ctx, float *temperature );

Example Description

This example demonstrates the use of Thermo K 3 Click board by reading and displaying the temperature measurements.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    thermok3_cfg_t thermok3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    thermok3_cfg_setup( &thermok3_cfg );
    THERMOK3_MAP_MIKROBUS( thermok3_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == thermok3_init( &thermok3, &thermok3_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Reads the temperature measurement in Celsius and displays the results on the USB UART approximately once per second. If there's no thermocouple type-K probe inserted an appropriate message will be displayed instead.

void application_task ( void )
{
    float temperature = 0;
    err_t error_flag = thermok3_read_temperature ( &thermok3, &temperature );
    if ( THERMOK3_OK == error_flag )
    {
        log_printf( &logger, " Temperature: %.2f C\r\n\n", temperature );
    }
    else if ( THERMOK3_OPEN_THERMOCOUPLE == error_flag )
    {
        log_printf( &logger, " NO thermocouple input\r\n\n" );
    }
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.ThermoK3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Stepper 19 Click

0

Stepper 19 Click is a compact add-on board for precise control over stepper motors. This board features the DRV8424, a stepper motor driver from Texas Instruments designed to drive both industrial and consumer stepper motors. The DRV8424 has dual N-channel power MOSFET H-bridge drivers, a microstepping indexer, and integrated current sensing, eliminating the need for external power sense resistors. Operating on a 5V to 30V external power supply, the DRV8424 can deliver up to 2.5A of full-scale output current, with an internal PWM current regulation scheme that includes smart tune, slow, and mixed decay options to optimize performance. Ideal for applications in multichannel system monitoring, robotics, precision positioning, and automated manufacturing processes, this Click board™ appears as a versatile solution for sophisticated stepper motor control.

[Learn More]

Brushless 4 click

5

Brushless 4 click is a 3 phase sensorless BLDC motor driver, which features a 180° sinusoidal drive, providing high efficiency and low acoustic noise. This type of drivers inherently provides higher torque in general, compared to classical 120° BLDC motor drivers.

[Learn More]

G2C click

5

Go to Cloud (G2C) click is a gateway Click board that provides a simple and reliable connection to Click Cloud solution, a rapid prototyping cloud-based environment, hosted by MikroElektronika.

[Learn More]