TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139254 times)
  2. FAT32 Library (71751 times)
  3. Network Ethernet Library (57122 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42404 times)
  7. GSM click (29835 times)
  8. mikroSDK (28078 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Stepper 21 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Stepper

Downloaded: 111 times

Not followed.

License: MIT license  

Stepper 21 Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the DRV8825, a stepper motor controller integral circuit from Texas Instruments. It is a PWM micro-stepping stepper motor driver with up to 1/32 micro-stepping resolution and a built-in micro-stepper indexer. The driver has two H-bridge drivers and is intended to drive a bipolar stepper motor in a voltage supply operating range of 8.2V up to 45V.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Stepper 21 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Stepper 21 Click" changes.

Do you want to report abuse regarding "Stepper 21 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Stepper 21 Click

Stepper 21 Click is a compact add-on board that contains a bipolar stepper motor driver. This board features the DRV8825, a stepper motor controller integral circuit from Texas Instruments. It is a PWM micro-stepping stepper motor driver with up to 1/32 micro-stepping resolution and a built-in micro-stepper indexer. The driver has two H-bridge drivers and is intended to drive a bipolar stepper motor in a voltage supply operating range of 8.2V up to 45V.

stepper21_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Apr 2023.
  • Type : I2C type

Software Support

We provide a library for the Stepper 21 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Stepper 21 Click driver.

Standard key functions :

  • stepper21_cfg_setup Config Object Initialization function.

    void stepper21_cfg_setup ( stepper21_cfg_t *cfg );
  • stepper21_init Initialization function.

    err_t stepper21_init ( stepper21_t *ctx, stepper21_cfg_t *cfg );
  • stepper21_default_cfg Click Default Configuration function.

    err_t stepper21_default_cfg ( stepper21_t *ctx );

Example key functions :

  • stepper21_set_step_mode This function sets the step mode resolution settings.

    err_t stepper21_set_step_mode ( stepper21_t *ctx, uint8_t mode );
  • stepper21_set_direction This function sets the motor direction by setting the DIR pin logic state.

    void stepper21_set_direction ( stepper21_t *ctx, uint8_t dir );
  • stepper21_drive_motor This function drives the motor for the specific number of steps at the selected speed.

    void stepper21_drive_motor ( stepper21_t *ctx, uint32_t steps, uint8_t speed );

Example Description

This example demonstrates the use of the Stepper 21 Click board by driving the motor in both directions for a desired number of steps.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    stepper21_cfg_t stepper21_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    stepper21_cfg_setup( &stepper21_cfg );
    STEPPER21_MAP_MIKROBUS( stepper21_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == stepper21_init( &stepper21, &stepper21_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( STEPPER21_ERROR == stepper21_default_cfg ( &stepper21 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor clockwise for 200 full steps and then counter-clockiwse for 400 quarter steps with 2 seconds delay before changing the direction. All data is being logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    log_printf ( &logger, " Move 200 full steps clockwise \r\n\n" );
    stepper21_set_step_mode ( &stepper21, STEPPER21_MODE_FULL_STEP );
    stepper21_set_direction ( &stepper21, STEPPER21_DIR_CW );
    stepper21_drive_motor ( &stepper21, 200, STEPPER21_SPEED_FAST );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    log_printf ( &logger, " Move 400 quarter steps counter-clockwise \r\n\n" );
    stepper21_set_step_mode ( &stepper21, STEPPER21_MODE_QUARTER_STEP );
    stepper21_set_direction ( &stepper21, STEPPER21_DIR_CCW );
    stepper21_drive_motor ( &stepper21, 400, STEPPER21_SPEED_VERY_FAST );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Stepper21

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

USB-C Sink 2 Click

0

USB-C Sink 2 Click is a compact add-on board with a standalone autonomous USB power delivery controller. This board features the AP33772, a high-performance USB PD sink controller from Diodes Incorporated. It supports dead battery mode to allow a system to be powered from an external source directly, establishes a valid source-to-sink connection, and negotiates a USB power delivery (PD) contract with a PD-capable source device. It also supports a flexible PD3.0 and PPS for applications that require direct voltage and current requests, with fine-tuning capabilities.

[Learn More]

MCP2542 Click

0

This application use for comunication

[Learn More]

DC Motor 24 Click

0

DC Motor 24 Click is a compact add-on board with a brushed DC motor driver. This board features the L9958, an SPI-controlled H-bridge from STMicroelectronics. The L9958 is rated for an operating voltage range from 4V to 28V, with direct PWM motor control and current regulation threshold set by the SPI interface from 2.5A to 8.6A. It also has complete diagnostic and protection capabilities supporting the robust and reliable operation.

[Learn More]