TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139251 times)
  2. FAT32 Library (71748 times)
  3. Network Ethernet Library (57120 times)
  4. USB Device Library (47430 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28076 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

DC Motor 27 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.9

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 97 times

Not followed.

License: MIT license  

DC Motor 27 Click is a compact add-on board that contains a high-performance brushed DC motor driver. This board features the DRV8143, an automotive half-bridge driver with integrated current sense and diagnostic from Texas Instruments.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "DC Motor 27 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "DC Motor 27 Click" changes.

Do you want to report abuse regarding "DC Motor 27 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


DC Motor 27 Click

DC Motor 27 Click is a compact add-on board that contains a high-performance brushed DC motor driver. This board features the DRV8143, an automotive half-bridge driver with integrated current sense and diagnostic from Texas Instruments.

dcmotor27_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Jun 2023.
  • Type : PWM type

Software Support

We provide a library for the DC Motor 27 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for DC Motor 27 Click driver.

Standard key functions :

  • dcmotor27_cfg_setup Config Object Initialization function.

    void dcmotor27_cfg_setup ( dcmotor27_cfg_t *cfg );
  • dcmotor27_init Initialization function.

    err_t dcmotor27_init ( dcmotor27_t *ctx, dcmotor27_cfg_t *cfg );
  • dcmotor27_default_cfg Click Default Configuration function.

    err_t dcmotor27_default_cfg ( dcmotor27_t *ctx );

Example key functions :

  • dcmotor27_set_duty_cycle DC Motor 27 sets PWM duty cycle.

    err_t dcmotor27_set_duty_cycle ( dcmotor27_t *ctx, float duty_cycle );
  • dcmotor27_get_flt_pin DC Motor 27 get flt pin state.

    uint8_t dcmotor27_get_flt_pin ( dcmotor27_t *ctx );
  • dcmotor27_set_coast DC Motor 27 set coast mode funtion.

    void dcmotor27_set_coast ( dcmotor27_t *ctx, uint8_t coast_state );

Example Description

This example demonstrates the use of the DC Motor 27 Click board by driving the motor at different speeds, enabling brake and coast modes.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    dcmotor27_cfg_t dcmotor27_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    dcmotor27_cfg_setup( &dcmotor27_cfg );
    DCMOTOR27_MAP_MIKROBUS( dcmotor27_cfg, MIKROBUS_1 );
    if ( PWM_ERROR == dcmotor27_init( &dcmotor27, &dcmotor27_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    if ( DCMOTOR27_ERROR == dcmotor27_default_cfg ( &dcmotor27 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }
    log_info( &logger, " Application Task " );
}

Application Task

Controls the motor speed by changing the PWM duty cycle every second, places the motor into coast or braking mode.

void application_task ( void ) 
{
    for ( uint8_t speed_cnt = 10; speed_cnt <= 100; speed_cnt += 10 )
    {
        float speed = ( float ) speed_cnt / 100;
        dcmotor27_set_duty_cycle( &dcmotor27, speed );
        log_printf( &logger, " Motor speed %d%% \r\n", ( uint16_t ) speed_cnt );
        Delay_ms ( 1000 );
    }

    log_printf( &logger, " Motor coasting \r\n" );
    dcmotor27_set_coast( &dcmotor27, DCMOTOR27_SET_COAST_ON );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    dcmotor27_set_coast( &dcmotor27, DCMOTOR27_SET_COAST_OFF );

    for ( uint8_t speed_cnt = 10; speed_cnt <= 100; speed_cnt += 10 )
    {
        float speed = ( float ) speed_cnt / 100;
        dcmotor27_set_duty_cycle( &dcmotor27, speed );
        log_printf( &logger, " Motor speed %d%% \r\n", ( uint16_t ) speed_cnt );
        Delay_ms ( 1000 );
    }

    log_printf( &logger, " Motor brake is on \r\n" );
    dcmotor27_pwm_stop( &dcmotor27 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    dcmotor27_pwm_start( &dcmotor27 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.DCMotor27

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

VAV Press Click

0

VAV Press Click is a compact add-on board that contains a board-mount pressure sensor. This board features the LMIS025B, a low differential pressure sensor from First Sensor (part of TE Connectivity). It is based on thermal flow measurement of gas through a micro-flow channel integrated within the sensor chip. The innovative LMI technology features superior sensitivity, especially for ultra-low pressures ranging from 0 to 25Pa. The extremely low gas flow through the sensor ensures high immunity to dust contamination, humidity, and long tubing compared to other flow-based pressure sensors.

[Learn More]

SRAM 4 Click

0

SRAM 4 Click is a compact add-on board that contains highly reliable nonvolatile memory. This board features the CY14B512Q, a 512Kbit SRAM with a nonvolatile element in each memory cell from Cypress Semiconductor, now part of Infineon.

[Learn More]

MCP251863 Click

0

MCP251863 Click is a compact add-on board representing a complete CAN solution used as a control node in a CAN network. This board features the MCP251863, IC representing a compact solution with a controller and a transceiver in one package, the MCP2518FD and ATA6563 from Microchip. The ATA6563, a low-level physical layer IC (PHY), provides a physical connection with the CAN bus itself, while the CAN controller MCP2518FD represents an interface between the MCU and the PHY. It features three operating modes with dedicated fail-safe features, remote wake-up via CAN, and ideally passive behavior when powered off on the CAN bus. This Click board™ is suitable for developing a wide range of automotive diagnostic applications, even on MCUs that don’t support CAN interface.

[Learn More]