TOP Contributors

  1. MIKROE (2655 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136782 times)
  2. FAT32 Library (69979 times)
  3. Network Ethernet Library (55950 times)
  4. USB Device Library (46274 times)
  5. Network WiFi Library (41888 times)
  6. FT800 Library (41184 times)
  7. GSM click (28987 times)
  8. PID Library (26419 times)
  9. mikroSDK (26373 times)
  10. microSD click (25382 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Speed Radar click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 37 times

Not followed.

License: MIT license  

Speed Radar Click is a compact add-on board that comes with a radar motion detector. This board features the K-LD2, a radar transceiver from RFbeam. It is a 24GHz radar with a detection distance for humans of up to 15m and cars of up to 30m. Its digital structure makes it easy to use in an MCU-based application or as a standalone device where movement detection or even a speed measurement is required.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Speed Radar click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Speed Radar click" changes.

Do you want to report abuse regarding "Speed Radar click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Speed Radar click

Speed Radar Click is a compact add-on board that comes with a radar motion detector. This board features the K-LD2, a radar transceiver from RFbeam. It is a 24GHz radar with a detection distance for humans of up to 15m and cars of up to 30m. Its digital structure makes it easy to use in an MCU-based application or as a standalone device where movement detection or even a speed measurement is required.

speedradar_click.png

click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Jul 2023.
  • Type : UART type

Software Support

We provide a library for the Speed Radar Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Speed Radar Click driver.

Standard key functions :

  • speedradar_cfg_setup Config Object Initialization function.

    void speedradar_cfg_setup ( speedradar_cfg_t *cfg );
  • speedradar_init Initialization function.

    err_t speedradar_init ( speedradar_t *ctx, speedradar_cfg_t *cfg );
  • speedradar_default_cfg Click Default Configuration function.

    err_t speedradar_default_cfg ( speedradar_t *ctx );

Example key functions :

  • speedradar_send_command Speed Radar send command function.

    err_t speedradar_send_command ( speedradar_t *ctx, uint8_t *cmd )
  • speedradar_get_direction Speed Radar get direction function.

    uint8_t speedradar_get_direction ( speedradar_t *ctx )
  • speedradar_get_detection Speed Radar get detection function.

    uint8_t speedradar_get_detection ( speedradar_t *ctx );

Example Description

This example demonstrates the use of Speed Radar click board by processing the incoming data and displaying them on the USB UART.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the click default configuration.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    speedradar_cfg_t speedradar_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    speedradar_cfg_setup( &speedradar_cfg );
    SPEEDRADAR_MAP_MIKROBUS( speedradar_cfg, MIKROBUS_1 );
    if ( UART_ERROR == speedradar_init( &speedradar, &speedradar_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( SPEEDRADAR_ERROR == speedradar_default_cfg ( &speedradar ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    speedradar_process( &speedradar );
    speedradar_clear_app_buf( );
    Delay_ms ( 100 );
    log_info( &logger, " Application Task " );
    log_printf( &logger, " ---------------------- \r\n" );
    Delay_ms ( 100 );
}

Application Task

The demo application sends a command that returns and displays the speed [km/h] and magnitude [dB] of the dominant movement for the forward and backward planes of the spectrum, measured frontal to the sensor. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void ) 
{
    speedradar_send_command( &speedradar, SPEEDRADAR_CMD_GET_DETECTION_STR );
    Delay_ms ( 50 );
    speedradar_process( &speedradar );
    if ( app_buf_len >= PROCESS_C00_RSP_LEN  )
    {
        speedradar_adv_det_display( );
        speedradar_clear_app_buf( );
        Delay_ms ( 100 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SpeedRadar

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Index Counter click

0

Index Counter Click is a simple prototyping high precision Hall-Effect switch solution with direction detection.

[Learn More]

ADC 8 click

5

ADC 8 Click is a high precision, low-power, 16-bit analog-to-digital converter (ADC), based around the ADS1115 IC. It is capable of sampling signals on four single-ended or two differential input channels.

[Learn More]

I2C MUX 6 click

0

I2C MUX 6 Click is a compact add-on board representing a bidirectional selector dedicated to I2C slave address conflicts applications. This board features the PCA9518, an expandable five-channel bidirectional buffer controlled by the I2C-bus from Texas Instruments. The PCA9518 overcomes the restriction of maximum bus capacitance by separating and buffering the I2C data (SDA) and clock (SCL) lines into multiple groups of 400pF I2C channels. It provides activation of the desired channel via a given Enable pin and permits extension of the I2C-bus, through an onboard expansion header, by buffering both the data (SDA) and the clock (SCL) lines enabling virtually an unlimited number of buses of 400pF.

[Learn More]