TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140168 times)
  2. FAT32 Library (72622 times)
  3. Network Ethernet Library (57643 times)
  4. USB Device Library (47957 times)
  5. Network WiFi Library (43553 times)
  6. FT800 Library (42942 times)
  7. GSM click (30140 times)
  8. mikroSDK (28670 times)
  9. PID Library (27057 times)
  10. microSD click (26552 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Speed Radar Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 153 times

Not followed.

License: MIT license  

Speed Radar Click is a compact add-on board that comes with a radar motion detector. This board features the K-LD2, a radar transceiver from RFbeam. It is a 24GHz radar with a detection distance for humans of up to 15m and cars of up to 30m. Its digital structure makes it easy to use in an MCU-based application or as a standalone device where movement detection or even a speed measurement is required.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Speed Radar Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Speed Radar Click" changes.

Do you want to report abuse regarding "Speed Radar Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Speed Radar Click

Speed Radar Click is a compact add-on board that comes with a radar motion detector. This board features the K-LD2, a radar transceiver from RFbeam. It is a 24GHz radar with a detection distance for humans of up to 15m and cars of up to 30m. Its digital structure makes it easy to use in an MCU-based application or as a standalone device where movement detection or even a speed measurement is required.

speedradar_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Jul 2023.
  • Type : UART type

Software Support

We provide a library for the Speed Radar Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Speed Radar Click driver.

Standard key functions :

  • speedradar_cfg_setup Config Object Initialization function.

    void speedradar_cfg_setup ( speedradar_cfg_t *cfg );
  • speedradar_init Initialization function.

    err_t speedradar_init ( speedradar_t *ctx, speedradar_cfg_t *cfg );
  • speedradar_default_cfg Click Default Configuration function.

    err_t speedradar_default_cfg ( speedradar_t *ctx );

Example key functions :

  • speedradar_send_command Speed Radar send command function.

    err_t speedradar_send_command ( speedradar_t *ctx, uint8_t *cmd )
  • speedradar_get_direction Speed Radar get direction function.

    uint8_t speedradar_get_direction ( speedradar_t *ctx )
  • speedradar_get_detection Speed Radar get detection function.

    uint8_t speedradar_get_detection ( speedradar_t *ctx );

Example Description

This example demonstrates the use of Speed Radar Click board by processing the incoming data and displaying them on the USB UART.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.

void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    speedradar_cfg_t speedradar_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    speedradar_cfg_setup( &speedradar_cfg );
    SPEEDRADAR_MAP_MIKROBUS( speedradar_cfg, MIKROBUS_1 );
    if ( UART_ERROR == speedradar_init( &speedradar, &speedradar_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( SPEEDRADAR_ERROR == speedradar_default_cfg ( &speedradar ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    speedradar_process( &speedradar );
    speedradar_clear_app_buf( );
    Delay_ms ( 100 );
    log_info( &logger, " Application Task " );
    log_printf( &logger, " ---------------------- \r\n" );
    Delay_ms ( 100 );
}

Application Task

The demo application sends a command that returns and displays the speed [km/h] and magnitude [dB] of the dominant movement for the forward and backward planes of the spectrum, measured frontal to the sensor. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void ) 
{
    speedradar_send_command( &speedradar, SPEEDRADAR_CMD_GET_DETECTION_STR );
    Delay_ms ( 50 );
    speedradar_process( &speedradar );
    if ( app_buf_len >= PROCESS_C00_RSP_LEN  )
    {
        speedradar_adv_det_display( );
        speedradar_clear_app_buf( );
        Delay_ms ( 100 );
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SpeedRadar

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

DIGI POT 9 Click

0

DIGI POT 9 Click is a compact add-on board used as a digitally controlled potentiometer. This board features the AD5235, a dual-channel, nonvolatile memory, digitally controlled potentiometer from Analog Devices. The AD5235's versatile programming via an SPI-compatible serial interface allows multiple modes of operation and adjustment. The resistor wiper position is determined by the RDAC register contents, which act as a scratchpad register, allowing unlimited changes of resistance settings. The nominal resistance of the RDAC between terminal A and terminal B (RAB) is 250 kΩ with 1024 positions (10-bit resolution).

[Learn More]

Remote Temp Click

0

Remote Temp Click is a temperature sensing Click board™, which features the EMC1833 from Microchip, a specifically designed IC, capable of measuring remote temperature. This option makes Remote Temp Click well-suited for monitoring the temperature of a CPU, GPU or FPGA, where the BJT model junction can be a substrate PNP or NPN.

[Learn More]

GPS 3 click

5

Simple example which demonstrates usage of the GPS3 Click board with QUECTEL L80 GPS module. It displays a map of the world on the GLCD and shows the location of the GPS module on it.

[Learn More]