TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (387 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (120 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140169 times)
  2. FAT32 Library (72624 times)
  3. Network Ethernet Library (57644 times)
  4. USB Device Library (47958 times)
  5. Network WiFi Library (43555 times)
  6. FT800 Library (42942 times)
  7. GSM click (30141 times)
  8. mikroSDK (28672 times)
  9. PID Library (27058 times)
  10. microSD click (26553 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Smoke 2 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.5

mikroSDK Library: 2.0.0.0

Category: Optical

Downloaded: 121 times

Not followed.

License: MIT license  

Smoke 2 Click is a compact add-on board that contains the most efficient version of the smoke detector. This board features the ADPD188BI, a complete photometric system for smoke detection using optical dual-wavelength technology from Analog Devices.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Smoke 2 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Smoke 2 Click" changes.

Do you want to report abuse regarding "Smoke 2 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


Smoke 2 Click

Smoke 2 Click is a compact add-on board that contains the most efficient version of the smoke detector. This board features the ADPD188BI, a complete photometric system for smoke detection using optical dual-wavelength technology from Analog Devices.

smoke2_click.png

Click Product page


Click library

  • Author : Jelena Milosavljevic
  • Date : Jul 2021.
  • Type : I2C/SPI type

Software Support

We provide a library for the Smoke2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Smoke2 Click driver.

Standard key functions :

  • smoke2_cfg_setup Config Object Initialization function.

    void smoke2_cfg_setup ( smoke2_cfg_t *cfg );
  • smoke2_init Initialization function.

    err_t smoke2_init ( smoke2_t *ctx, smoke2_cfg_t *cfg );
  • smoke2_default_cfg Click Default Configuration function.

    err_t smoke2_default_cfg ( smoke2_t *ctx );

Example key functions :

  • smoke2_get_int_pin This function eget state of int pin of Smoke 2 Click board.

    uint8_t smoke2_get_int_pin ( smoke2_t *ctx );
  • smoke2_write_data This function is generic for writing data to register of Smoke 2 Click board.

    void smoke2_write_data( smoke2_t *ctx, uint8_t reg, uint16_t tx_data );
  • smoke2_read_data This function is generic for reading data from registar of Smoke 2 Click board.

    uint16_t smoke2_read_data( smoke2_t *ctx, uint8_t reg );

Example Description

This example is made to see how Smoke 2 clicks work. The purpose of this example is that, depending on the way we choose, it collects data from the external environment about smoke, processes it, and prints it via the UART terminal.

The demo application is composed of two sections :

Application Init

Initialization of communication modules, additional pins, Mapping pins and configures device for measurement.


void application_init ( void ) 
{
    log_cfg_t log_cfg;            /**< Logger config object. */
    smoke2_cfg_t smoke2_cfg;      /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );   
    log_info( &logger, " Application Init " );

    // Click initialization.
    smoke2_cfg_setup( &smoke2_cfg );
    SMOKE2_MAP_MIKROBUS( smoke2_cfg, MIKROBUS_1 );
    err_t init_flag  = smoke2_init( &smoke2, &smoke2_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }

    smoke2_soft_reset( &smoke2 );
    smoke2_set_mode( &smoke2, SMOKE2_MODE_IDLE );

    uint16_t devid = smoke2_read_data( &smoke2, SMOKE2_REG_DEVID );
    log_printf( &logger, ">> ID:  0x%.2X\r\n", ( uint16_t ) ( devid & 0xFF ) );  
    log_printf( &logger, ">> REV: 0x%.2X\r\n", ( uint16_t ) ( ( devid >> 8 ) & 0xFF ) );
    Delay_ms ( 1000 );

    log_printf( &logger, ">> Configuration <<\r\n" );
    smoke2_default_cfg( &smoke2 ); 
    Delay_ms ( 1000 ); 

#if ( EXAMPLE_MODE == EXAMPLE_MODE_SMOKE )
    log_printf( &logger, ">> SMOKE MODE <<\r\n" );
    log_printf( &logger, ">> Calibration <<\r\n" );
    uint16_t calib_data = smoke2_smoke_calibration( &smoke2, 500 );
    log_printf( &logger, ">> Calibration data: %u\r\n", calib_data );
#elif ( EXAMPLE_MODE == EXAMPLE_MODE_PROXIMITY )
    log_printf( &logger, ">> PROXIMITY MODE <<\r\n" );
#endif
    log_info( &logger, " Application Task " );
}

Application Task

Example shows module working depending on example mode. We can choose between: EXAMPLE_MODE_PROXIMITY and EXAMPLE_MODE_SMOKE.


void application_task ( void ) 
{
#if ( EXAMPLE_MODE == EXAMPLE_MODE_SMOKE )
    smoke_example( &smoke2 );
#elif ( EXAMPLE_MODE == EXAMPLE_MODE_PROXIMITY )
    proximity_example( );
#endif
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Smoke2

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

AudioAmp 2 demo example

0

This example is made to demonstrate the operation of the AudioAmp 2 click.

[Learn More]

H-Bridge Driver 2 Click

0

H-Bridge Driver 2 Click is a compact add-on board that contains an H-bridge gate driver, also known as a full-bridge pre-driver. This board features the NCV7535, a monolithic H−bridge pre-driver for a DC motor with an enhanced feature set, useful in automotive systems from ON Semiconductor. The gate driver channels are independently controlled by a 24-bit SPI interface, allowing this Click board™ to be optionally configured in a single or dual H-bridge mode. It has a wide operating voltage range from 6V to 18V with built-in protection features against short-circuit, under/over voltage, overcurrent, and overtemperature conditions. This Click board™ is suitable to drive external MOSFETs, thus providing control of a DC-motor.

[Learn More]

Buck 5 click

5

Buck 5 click is a high-efficiency buck (step-down) DC/DC converter, which can provide digitally adjusted step-down voltage on its output while delivering a considerable amount of current.

[Learn More]