TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141250 times)
  2. FAT32 Library (74083 times)
  3. Network Ethernet Library (58711 times)
  4. USB Device Library (48814 times)
  5. Network WiFi Library (44523 times)
  6. FT800 Library (44072 times)
  7. GSM click (30803 times)
  8. mikroSDK (29648 times)
  9. PID Library (27355 times)
  10. microSD click (27251 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

BLE 6 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.5

mikroSDK Library: 2.0.0.0

Category: BT/BLE

Downloaded: 175 times

Not followed.

License: MIT license  

BLE 6 Click is a Bluetooth low energy system-on-chip application processor certified module, compliant with BT specifications v5.0 and BQE qualified. The featured BlueNRG-M2 module developed by STMicroelectronics supports multiple roles simultaneously and can act at the same time as Bluetooth master and slave device.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "BLE 6 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "BLE 6 Click" changes.

Do you want to report abuse regarding "BLE 6 Click".

  • mikroSDK Library 1.0.0.0
  • Comments (0)

mikroSDK Library Blog


BLE 6 Click

BLE 6 Click is a Bluetooth low energy system-on-chip application processor certified module, compliant with BT specifications v5.0 and BQE qualified. The featured BlueNRG-M2 module developed by STMicroelectronics supports multiple roles simultaneously and can act at the same time as Bluetooth master and slave device.

ble6_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Sep 2021.
  • Type : UART type

Software Support

We provide a library for the BLE6 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for BLE6 Click driver.

Standard key functions :

  • ble6_cfg_setup Config Object Initialization function.

    void ble6_cfg_setup ( ble6_cfg_t *cfg );
  • ble6_init Initialization function.

    err_t ble6_init ( ble6_t *ctx, ble6_cfg_t *cfg );

Example key functions :

  • ble6_set_response_handler Set response handlers function.

    void ble6_set_response_handler ( void ( *handler )( uint8_t* ), ble6_hdl_t driver_hdl );
  • ble6_set_handlers Set handlers function.

    void ble6_set_handlers ( ble6_handler_t event_handler, ble6_handler_t eve_hdlr );
  • ble6_parser_rsp Response parser function.

    void ble6_parser_rsp ( ble6_t *ctx, ble6_rsp_t *response );

Example Description

This example reads and processes data from BLE 6 clicks.

The demo application is composed of two sections :

Application Init

Initialization driver enables - UART, sets handlers initialize and enable UART interrupt, reset and configures BLE module, initialize BLE Server Profile ( Services and Characteristics ).


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    ble6_cfg_t ble6_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ble6_cfg_setup( &ble6_cfg );
    BLE6_MAP_MIKROBUS( ble6_cfg, MIKROBUS_1 );
    err_t init_flag  = ble6_init( &ble6, &ble6_cfg );
    if ( UART_ERROR == init_flag ) 
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );

        for ( ; ; );
    }
    Delay_ms ( 1000 );
    ble6_power_on( &ble6, BLE6_MODULE_POWER_ON );
    Delay_ms ( 1000 );
    ble6_module_init( );
    Delay_ms ( 100 );
    log_printf( &logger, "-> Local Version Information: \r\n" );
    ble6_send_command( &ble6, &hci_read_local_version_information[ 0 ], 4 );
    Delay_ms ( 100 );
    ble6_handler( );
    ble6_display_log( );
    ble6_local_version_info( );
    Delay_ms ( 100 );

    log_printf( &logger, "--------------------------------\r\n" );
    log_printf( &logger, "-> ACI GAP Update Value: \r\n" );
    ble6_send_command( &ble6, &aci_gatt_update_value[ 0 ], 21 );
    Delay_ms ( 10 );
    ble6_handler( );
    ble6_display_log( );
    Delay_ms ( 100 );

    log_printf( &logger, "--------------------------------\r\n" );
    log_printf( &logger, "-> HCI Set Scan. Response Data: \r\n" );
    ble6_send_command( &ble6, &hci_le_set_scan_response_data[ 0 ], 36 );
    Delay_ms ( 10 );
    ble6_handler( );
    ble6_display_log( );
    Delay_ms ( 100 );

    log_printf( &logger, "--------------------------------\r\n" );
    log_printf( &logger, "-> ACI GAP Set Discoverable: \r\n" );
    ble6_send_command( &ble6, &aci_gap_set_discoverable[ 0 ], 30 );
    Delay_ms ( 10 );
    ble6_handler( );
    ble6_display_log( );
    Delay_ms ( 100 );

    log_info( &logger, " Application Task " );
}

Application Task

The app starts by checking the system ready flag and returns the Bluetooth device address. After that, the chain of commands creates Primary Server Profiles: Device Information, Generic Access and Custom Service to Start Advertising. For transmit messages, we use Generic Access Primary Service with Write permissions of the characteristic Element. In this example, transmitting message is limited to a maximum of 11 characters. Results are being sent to the Usart Terminal where you can track their changes.


void application_task ( void ) 
{
    ble6_event_handler( );

    while ( device_connected_flag ) 
    {
        int32_t cnt = ble6_generic_read( &ble6, rx_response, PROCESS_BUFFER_SIZE );
        Delay_ms ( 100 );
        if ( ( ble6_strncmp( rx_response, hci_le_serverwrite_event, 1 ) == 0 ) && ( cnt > 13 ) ) 
        {
            ble6_response_handler( );
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.BLE6

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

NanoBeacon Click

0

NanoBeacon Click is a compact add-on board that provides a powerful and efficient Bluetooth beacon solution. This board features the IN100, an ultra-low power Bluetooth 5.3 Beacon SoC from InPlay, that sets a new standard in beacon technology. Its ultra-low power consumption, enhanced privacy mode, and three beacon modes offer seamless compatibility with no Bluetooth programming required - plug and play. Its compact design houses two types of built-in memory (4Kb OTP and 4KB SRAM), UART and I2C interfaces, and a hardware security engine.

[Learn More]

MUX 5 Click

0

MUX 5 Click is a compact add-on board that contains a precise multiplexing solution. This board features the MAX14661, a serially controlled, dual-channel analog multiplexer from Analog Devices, allowing any of the 16 pins to be connected to either common pin simultaneously in any combination. The MAX14661 features Beyond-the-Rails™ capability that allows ±5.5V signals to be passed with any supply configuration alongside a configurable host interface that supports SPI and I2C serial communications. Both modes provide individual control of each independent switch so that any combination of switches can be applied.

[Learn More]

Buck click

1

BUCK click is a buck switching regulator that accepts a wide input voltage range of up to 40V and steps it down to 3.3V or 5V. The click carries the LT3976 40V, 5A, 2MHz step-down switching regulator with 3.3µA quiescent current.

[Learn More]