TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (142072 times)
  2. FAT32 Library (75298 times)
  3. Network Ethernet Library (59496 times)
  4. USB Device Library (49524 times)
  5. Network WiFi Library (45288 times)
  6. FT800 Library (44918 times)
  7. GSM click (31435 times)
  8. mikroSDK (30452 times)
  9. microSD click (27802 times)
  10. PID Library (27624 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

SPI Isolator 8 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: SPI

Downloaded: 226 times

Not followed.

License: MIT license  

SPI Isolator 8 Click is a compact add-on board representing a digital isolator optimized for a serial peripheral interface. This board features the ISOW7743, a quad-channel digital isolator from Texas Instruments. This device has a maximum data rate of 100Mbps and transfers digital signals between circuits with different power domains featuring reinforced isolation for a withstand voltage rating of 5kVRMS for 60 seconds.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "SPI Isolator 8 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "SPI Isolator 8 Click" changes.

Do you want to report abuse regarding "SPI Isolator 8 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


SPI Isolator 8 Click

SPI Isolator 8 Click is a compact add-on board representing a digital isolator optimized for a serial peripheral interface. This board features the ISOW7743, a quad-channel digital isolator from Texas Instruments. This device has a maximum data rate of 100Mbps and transfers digital signals between circuits with different power domains featuring reinforced isolation for a withstand voltage rating of 5kVRMS for 60 seconds.

spiisolator8_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Aug 2023.
  • Type : SPI type

Software Support

We provide a library for the SPI Isolator 8 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for SPI Isolator 8 Click driver.

Standard key functions :

  • spiisolator8_cfg_setup Config Object Initialization function.

    void spiisolator8_cfg_setup ( spiisolator8_cfg_t *cfg );
  • spiisolator8_init Initialization function.

    err_t spiisolator8_init ( spiisolator8_t *ctx, spiisolator8_cfg_t *cfg );
  • spiisolator8_default_cfg Click Default Configuration function.

    void spiisolator8_default_cfg ( spiisolator8_t *ctx );

Example key functions :

  • spiisolator8_transfer SPI Isolator 8 data transfer function.

    err_t spiisolator8_transfer ( spiisolator8_t *ctx, uint8_t *data_in, uint8_t *data_out, uint8_t len );
  • spiisolator8_enc_enable SPI Isolator 8 enable side 1 function.

    void spiisolator8_enc_enable ( spiisolator8_t *ctx );
  • spiisolator8_enp_enable SPI Isolator 8 enable side 2 function.

    void spiisolator8_enp_enable ( spiisolator8_t *ctx );

Example Description

This example demonstrates the use of SPI Isolator 8 Click board™ by reading the manufacturer ID and device ID of the connected Flash 11 Click board™.

The demo application is composed of two sections :

Application Init

The initialization of SPI module, log UART, and additional pins. After the driver init, the application enabled both isolated sides of the device.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    spiisolator8_cfg_t spiisolator8_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    spiisolator8_cfg_setup( &spiisolator8_cfg );
    SPIISOLATOR8_MAP_MIKROBUS( spiisolator8_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == spiisolator8_init( &spiisolator8, &spiisolator8_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    spiisolator8_default_cfg ( &spiisolator8 );
    Delay_ms ( 100 );

    log_info( &logger, " Application Task " );
    log_printf( &logger, " -----------------------\r\n" );
    Delay_ms ( 100 );
}

Application Task

The demo application reads and checks the manufacturer ID and device ID of the connected Flash 11 Click board™. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void )
{
    static uint8_t cmd_get_id[ 6 ] = { FLASH11_CMD_GET_ID };
    static uint8_t read_id[ 6 ] = { 0 };
    if ( SPIISOLATOR8_OK == spiisolator8_transfer( &spiisolator8, &cmd_get_id[ 0 ], &read_id[ 0 ], 6 ) )
    {
        if ( ( FLASH11_MANUFACTURER_ID == read_id[ 4 ] ) && ( FLASH11_DEVICE_ID == read_id[ 5 ] ) )
        {
            log_printf( &logger, " Manufacturer ID: 0x%.2X\r\n", ( uint16_t ) read_id[ 4 ] );
            log_printf( &logger, " Device ID: 0x%.2X    \r\n", ( uint16_t ) read_id[ 5 ] );
            log_printf( &logger, " -----------------------\r\n" );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
            Delay_ms ( 1000 );
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.SPIIsolator8

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

UPS Click

5

UPS click is a supercapacitor charger click that provides continuous power for a load connected to the output terminals, even after the power supply is removed.

[Learn More]

FRAM 5 Click

0

FRAM 5 Click is a compact add-on board representing a highly reliable ferroelectric random access memory solution. This board features the FM24V10, a 1Mbit nonvolatile memory employing an advanced ferroelectric process organized as 128K words of 8 bits each from Infineon. This I2C configurable FRAM performs read and write operations similar to a RAM providing reliable data retention for 151 years while eliminating the complexities, overhead, and system-level reliability problems caused by EEPROM and other nonvolatile memories.

[Learn More]

LED Driver 15 Click

0

LED Driver 15 Click is a compact add-on board that simplifies the control of multiple LEDs. This board features the MP3309C, a fully integrated synchronous boost white LED driver with an I2C interface from Monolithic Power Systems. The MP3309C offers high efficiency, delivers up to 40mA of LED current, and operates from a voltage of mikroBUS™ power rails, supporting up to 8 white LEDs in series. It also features a programmable switching frequency to optimize efficiency, supports analog and PWM dimming, and has multiple built-in protection functions that protect the circuit during abnormalities.

[Learn More]