TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (403 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (130 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140937 times)
  2. FAT32 Library (73499 times)
  3. Network Ethernet Library (58312 times)
  4. USB Device Library (48484 times)
  5. Network WiFi Library (44086 times)
  6. FT800 Library (43658 times)
  7. GSM click (30544 times)
  8. mikroSDK (29265 times)
  9. PID Library (27204 times)
  10. microSD click (26928 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 18 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-12-26

Package Version: 2.1.0.1

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 62 times

Not followed.

License: MIT license  

Brushless 18 Click is a compact add-on board that controls three-phase sensorless brushless DC (BLDC) motors. This board features the ATmega8A, an 8-bit microcontroller from Microchip, ensuring precise and efficient motor control. This board features six high-performance N-channel MOSFETs (STL120N4F6AG) for switching power from an external source to the motor's stator coils, supporting currents up to 50A and operating with input voltages ranging from 0 to 40V.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 18 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 18 Click" changes.

Do you want to report abuse regarding "Brushless 18 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Brushless 18 Click

Brushless 18 Click is a compact add-on board that controls three-phase sensorless brushless DC (BLDC) motors. This board features the ATmega8A, an 8-bit microcontroller from Microchip, ensuring precise and efficient motor control. This board features six high-performance N-channel MOSFETs (STL120N4F6AG) for switching power from an external source to the motor's stator coils, supporting currents up to 50A and operating with input voltages ranging from 0 to 40V.

brushless18_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Aug 2024.
  • Type : PWM type

Software Support

We provide a library for the Brushless 18 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Brushless 18 Click driver.

Standard key functions :

  • brushless18_cfg_setup Config Object Initialization function.

    void brushless18_cfg_setup ( brushless18_cfg_t *cfg );
  • brushless18_init Initialization function.

    err_t brushless18_init ( brushless18_t *ctx, brushless18_cfg_t *cfg );

Example key functions :

  • brushless18_throttle_calib This function performs the ESC throttle calibration.

    err_t brushless18_throttle_calib ( brushless18_t *ctx );
  • brushless18_drive_motor This function drives the motor at the selected speed and direction.

    err_t brushless18_drive_motor ( brushless18_t *ctx, uint8_t direction, uint8_t speed );

Example Description

This example demonstrates the use of the Brushless 18 Click board by driving the motor in both directions at different speeds.

The demo application is composed of two sections :

Application Init

Initializes the driver and calibrates the Click board.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless18_cfg_t brushless18_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    brushless18_cfg_setup( &brushless18_cfg );
    BRUSHLESS18_MAP_MIKROBUS( brushless18_cfg, MIKROBUS_1 );
    if ( PWM_ERROR == brushless18_init( &brushless18, &brushless18_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( BRUSHLESS18_ERROR == brushless18_throttle_calib ( &brushless18 ) )
    {
        log_error( &logger, " Throttle calibration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Changes the motor speed every 500 milliseconds with steps of 5%. At the minimal speed, the motor switches direction. Each step will be logged on the USB UART where you can track the program flow.

void application_task ( void )
{
    static uint8_t direction = BRUSHLESS18_DIRECTION_CW;
    static int8_t speed = BRUSHLESS18_SPEED_MIN;
    static int8_t speed_step = 5;
    brushless18_drive_motor ( &brushless18, direction, speed );
    log_printf( &logger, " Direction: %s\r\n", 
                ( char * ) ( BRUSHLESS18_DIRECTION_CW == direction ? "CW" : "CCW" ) );
    log_printf( &logger, " Speed: %u%%\r\n\n", ( uint16_t ) speed );
    Delay_ms ( 500 );

    speed += speed_step;
    if ( speed > BRUSHLESS18_SPEED_MAX )
    {
        speed_step = -speed_step;
        speed += speed_step;
        speed += speed_step;
    }
    else if ( speed < BRUSHLESS18_SPEED_MIN )
    {
        speed_step = -speed_step;
        speed += speed_step;
        direction ^= 1;
        Delay_ms ( 1000 );
    }
}

Note

The theoretical maximal PWM Clock frequency for this Click board is 500 Hz. The default PWM Clock frequency is set to 400 Hz. To achieve such a low frequency, the user will probably need to decrease the MCU's main clock frequency in the Setup MCU Settings.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless18

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Angle 5 click

5

Angle 5 Click is a compact add-on board that detects the absolute angular position of a permanent magnet, typically a diametrically magnetized cylinder on a rotating shaft.

[Learn More]

LSM6DSL click

7

LSM6DSL click measures linear and angular velocity with six degrees of freedom. It carries the LSM6DSL high-performance 3-axis digital accelerometer and 3-axis digital gyroscope. The click is designed to run on a 3.3V power supply.

[Learn More]

Hydro Probe Click

0

Hydro Probe Click is a capacitive soil moisture sensor based on capacitive changes that are used to detect the volumetric water content in the soil. Water detection is achieved by using function oscillator MIC1557 and ADC converter MCP3221 from Microchip, which allow you to convert moisture presents to the digital value. Compared to resistant soil moisture sensors, its capacitive style reduces electrode erosion making it corrosion resistant and a better choice for applications such as soil moisture detection and automatic plant watering.

[Learn More]