We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-12-26
Package Version: 2.1.0.1
mikroSDK Library: 2.0.0.0
Category: Brushless
Downloaded: 21 times
Not followed.
License: MIT license
Brushless 18 Click is a compact add-on board that controls three-phase sensorless brushless DC (BLDC) motors. This board features the ATmega8A, an 8-bit microcontroller from Microchip, ensuring precise and efficient motor control. This board features six high-performance N-channel MOSFETs (STL120N4F6AG) for switching power from an external source to the motor's stator coils, supporting currents up to 50A and operating with input voltages ranging from 0 to 40V.
Do you want to subscribe in order to receive notifications regarding "Brushless 18 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 18 Click" changes.
Do you want to report abuse regarding "Brushless 18 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
5774_brushless_18_cli.zip [528.74KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
Brushless 18 Click is a compact add-on board that controls three-phase sensorless brushless DC (BLDC) motors. This board features the ATmega8A, an 8-bit microcontroller from Microchip, ensuring precise and efficient motor control. This board features six high-performance N-channel MOSFETs (STL120N4F6AG) for switching power from an external source to the motor's stator coils, supporting currents up to 50A and operating with input voltages ranging from 0 to 40V.
We provide a library for the Brushless 18 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for Brushless 18 Click driver.
brushless18_cfg_setup
Config Object Initialization function.
void brushless18_cfg_setup ( brushless18_cfg_t *cfg );
brushless18_init
Initialization function.
err_t brushless18_init ( brushless18_t *ctx, brushless18_cfg_t *cfg );
brushless18_throttle_calib
This function performs the ESC throttle calibration.
err_t brushless18_throttle_calib ( brushless18_t *ctx );
brushless18_drive_motor
This function drives the motor at the selected speed and direction.
err_t brushless18_drive_motor ( brushless18_t *ctx, uint8_t direction, uint8_t speed );
This example demonstrates the use of the Brushless 18 Click board by driving the motor in both directions at different speeds.
The demo application is composed of two sections :
Initializes the driver and calibrates the Click board.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
brushless18_cfg_t brushless18_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
brushless18_cfg_setup( &brushless18_cfg );
BRUSHLESS18_MAP_MIKROBUS( brushless18_cfg, MIKROBUS_1 );
if ( PWM_ERROR == brushless18_init( &brushless18, &brushless18_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( BRUSHLESS18_ERROR == brushless18_throttle_calib ( &brushless18 ) )
{
log_error( &logger, " Throttle calibration." );
for ( ; ; );
}
log_info( &logger, " Application Task " );
}
Changes the motor speed every 500 milliseconds with steps of 5%. At the minimal speed, the motor switches direction. Each step will be logged on the USB UART where you can track the program flow.
void application_task ( void )
{
static uint8_t direction = BRUSHLESS18_DIRECTION_CW;
static int8_t speed = BRUSHLESS18_SPEED_MIN;
static int8_t speed_step = 5;
brushless18_drive_motor ( &brushless18, direction, speed );
log_printf( &logger, " Direction: %s\r\n",
( char * ) ( BRUSHLESS18_DIRECTION_CW == direction ? "CW" : "CCW" ) );
log_printf( &logger, " Speed: %u%%\r\n\n", ( uint16_t ) speed );
Delay_ms ( 500 );
speed += speed_step;
if ( speed > BRUSHLESS18_SPEED_MAX )
{
speed_step = -speed_step;
speed += speed_step;
speed += speed_step;
}
else if ( speed < BRUSHLESS18_SPEED_MIN )
{
speed_step = -speed_step;
speed += speed_step;
direction ^= 1;
Delay_ms ( 1000 );
}
}
The theoretical maximal PWM Clock frequency for this Click board is 500 Hz. The default PWM Clock frequency is set to 400 Hz. To achieve such a low frequency, the user will probably need to decrease the MCU's main clock frequency in the Setup MCU Settings.
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.