TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (91 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139266 times)
  2. FAT32 Library (71754 times)
  3. Network Ethernet Library (57128 times)
  4. USB Device Library (47432 times)
  5. Network WiFi Library (43092 times)
  6. FT800 Library (42408 times)
  7. GSM click (29835 times)
  8. mikroSDK (28101 times)
  9. PID Library (26886 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 11 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 90 times

Not followed.

License: MIT license  

Brushless 11 Click is a compact add-on board that controls brushless DC motors with any MCU. This board features the A4931, a 3-phase brushless DC motor pre-driver from Allegro Microsystems. It drives six onboard N-channel power MOSFETs and supplies the motor with 8V up to 30V voltages. This pre-driver offers enable, direction, and brake inputs that can control motor functions and logic outputs for measuring motor rotation.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 11 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 11 Click" changes.

Do you want to report abuse regarding "Brushless 11 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Brushless 11 Click

Brushless 11 Click is a compact add-on board that controls brushless DC motors with any MCU. This board features the A4931, a 3-phase brushless DC motor pre-driver from Allegro Microsystems. It drives six onboard N-channel power MOSFETs and supplies the motor with 8V up to 30V voltages. This pre-driver offers enable, direction, and brake inputs that can control motor functions and logic outputs for measuring motor rotation.

brushless11_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Aug 2023.
  • Type : PWM type

Software Support

We provide a library for the Brushless 11 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Brushless 11 Click driver.

Standard key functions :

  • brushless11_cfg_setup Config Object Initialization function.

    void brushless11_cfg_setup ( brushless11_cfg_t *cfg );
  • brushless11_init Initialization function.

    err_t brushless11_init ( brushless11_t *ctx, brushless11_cfg_t *cfg );
  • brushless11_default_cfg Click Default Configuration function.

    err_t brushless11_default_cfg ( brushless11_t *ctx );

Example key functions :

  • brushless11_get_fg1_pin Brushless 11 get FG1 pin state function.

    uint8_t brushless11_get_fg1_pin ( brushless11_t *ctx );
  • brushless11_set_brake Brushless 11 set motor brake state function.

    void brushless11_set_brake ( brushless11_t *ctx, uint8_t brake_state );
  • brushless11_set_speed Brushless 11 set motor speed.

    err_t brushless11_set_speed ( brushless11_t *ctx, uint8_t speed );

Example Description

This example demonstrates the use of the Brushless 11 Click board by driving the motor at different speeds.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless11_cfg_t brushless11_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    brushless11_cfg_setup( &brushless11_cfg );
    BRUSHLESS11_MAP_MIKROBUS( brushless11_cfg, MIKROBUS_1 );
    if ( PWM_ERROR == brushless11_init( &brushless11, &brushless11_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( BRUSHLESS11_ERROR == brushless11_default_cfg ( &brushless11 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Controls the motor speed by changing the PWM duty cycle every second. The duty cycle ranges from 10% to 100%. Each step will be logged on the USB UART where you can track the program flow.

void application_task ( void ) 
{
    log_printf( &logger, " Motor brake is off \r\n" );
    brushless11_set_brake( &brushless11, BRUSHLESS11_BRAKE_OFF );
    for ( uint8_t speed_cnt = 10; speed_cnt <= 100; speed_cnt += 10 )
    {
        brushless11_set_speed( &brushless11, speed_cnt );
        log_printf( &logger, " Speed is: %d%% \r\n", ( uint16_t ) speed_cnt );
        Delay_ms ( 1000 );
    }
    log_printf( &logger, " Motor brake is on \r\n" );
    brushless11_set_brake( &brushless11, BRUSHLESS11_BRAKE_ON );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless11

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

R Meter click

1

R Meter click is a mikroBUS add-on board with circuitry for measuring the value of resistors. The board can be used to measure a wide range of resistors (from 0 to 1 Mega Ohm) The design is based on a non-inverting amplifier circuit, with the measured resistor placed in a feedback loop that influences the gain of the amplifier.

[Learn More]

Thermo J click

5

Thermo J click is a temperature measurement click board™, which uses a thermocouple type-J probe, connected to a PPC-SMP-J onboard connector. The active part of the Thermo J click is MCP9600 by Microchip - a thermocouple EMF to temperature converter, with 1.5°C of maximum accuracy.

[Learn More]

Fan 2 click

6

Fan 2 click carries the MAX31760 precision fan-speed controller. It can also measure temperature and adjust the fan speed to keep the temperature at the same level. The click is designed to run on either 3.3V or 5V power supply. It communicates with the target microcontroller over I2C interface.

[Learn More]