TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140535 times)
  2. FAT32 Library (73023 times)
  3. Network Ethernet Library (58026 times)
  4. USB Device Library (48212 times)
  5. Network WiFi Library (43821 times)
  6. FT800 Library (43293 times)
  7. GSM click (30354 times)
  8. mikroSDK (28984 times)
  9. PID Library (27115 times)
  10. microSD click (26717 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Gyro 9 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.7

mikroSDK Library: 2.0.0.0

Category: Motion

Downloaded: 94 times

Not followed.

License: MIT license  

Gyro 9 Click is a compact add-on board that contains a high-performance gyroscope. This board features the A3G4250D, a MEMS motion sensor from STMicroelectronics. It is a low-power 3-axes digital output gyroscope that provides unprecedented stability at zero rate level and sensitivity over temperature and time and is equipped with an embedded temperature sensor. The gyroscope has a 16-bit rate value data output with an 8-bit compensation temperature data output.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Gyro 9 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Gyro 9 Click" changes.

Do you want to report abuse regarding "Gyro 9 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Gyro 9 Click

Gyro 9 Click is a compact add-on board that contains a high-performance gyroscope. This board features the A3G4250D, a MEMS motion sensor from STMicroelectronics. It is a low-power 3-axes digital output gyroscope that provides unprecedented stability at zero rate level and sensitivity over temperature and time and is equipped with an embedded temperature sensor. The gyroscope has a 16-bit rate value data output with an 8-bit compensation temperature data output.

gyro9_click.png

Click Product page


Click library

  • Author : Nenad Filipovic
  • Date : Aug 2023.
  • Type : I2C/SPI type

Software Support

We provide a library for the Gyro 9 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Gyro 9 Click driver.

Standard key functions :

  • gyro9_cfg_setup Config Object Initialization function.

    void gyro9_cfg_setup ( gyro9_cfg_t *cfg );
  • gyro9_init Initialization function.

    err_t gyro9_init ( gyro9_t *ctx, gyro9_cfg_t *cfg );
  • gyro9_default_cfg Click Default Configuration function.

    err_t gyro9_default_cfg ( gyro9_t *ctx );

Example key functions :

  • gyro9_get_gyro_axis Gyro 9 get gyro sensor axes function.

    err_t gyro9_get_gyro_axis ( gyro9_t *ctx, gyro9_axis_t *gyro_axis );
  • gyro9_get_axis_data Gyro 9 get gyro data function.

    err_t gyro9_get_axis_data ( gyro9_t *ctx, gyro9_axis_data_t *gyro_axis );
  • gyro9_get_data_ready Gyro 9 get data ready function.

    uint8_t gyro9_get_data_ready ( gyro9_t *ctx );

Example Description

This library contains API for Gyro 9 Click driver. The library initializes and defines the I2C and SPI bus drivers to write and read data from registers, as well as the default configuration for reading gyroscope data.

The demo application is composed of two sections :

Application Init

The initialization of I2C or SPI module, log UART, and additional pins. After the driver init, the app executes a default configuration.

void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    gyro9_cfg_t gyro9_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    gyro9_cfg_setup( &gyro9_cfg );
    GYRO9_MAP_MIKROBUS( gyro9_cfg, MIKROBUS_1 );
    err_t init_flag = gyro9_init( &gyro9, &gyro9_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( GYRO9_ERROR == gyro9_default_cfg ( &gyro9 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
    log_printf( &logger, "_________________\r\n" );
    Delay_ms ( 100 );
}

Application Task

This example demonstrates the use of the Gyro 9 Click board™. Measures and displays gyroscope angular rate for X-axis, Y-axis, and Z-axis. Results are being sent to the UART Terminal, where you can track their changes.

void application_task ( void )
{
    gyro9_axis_t gyro_axis;
    if ( gyro9_get_data_ready( &gyro9 ) )
    {
        if ( GYRO9_OK == gyro9_get_gyro_axis( &gyro9, &gyro_axis ) )
        {
            log_printf( &logger, " Gyro X: %.2f pds\r\n", gyro_axis.x );
            log_printf( &logger, " Gyro Y: %.2f pds\r\n", gyro_axis.y );
            log_printf( &logger, " Gyro Z: %.2f pds\r\n", gyro_axis.z );
            log_printf( &logger, "_________________\r\n" );
            Delay_ms ( 1000 );
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Gyro9

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Power Bank 2 click

5

The PowerBank 2 Click is a Click board equipped with the RT9480, highly integrated and easy to use power solution for Li-ion power bank and other powered handheld applications. It’s usually called EZPBS (Easy to Use PowerBank Solution).

[Learn More]

NFC Tag 5 Click

0

NFC Tag 5 Click is a compact add-on board that contains a compact NFC tag IC. This board features the M24LR64E-R, a dynamic NFC/RFID tag IC with a dual interface 64-Kbit EEPROM from STMicroelectronics. It features an I2C interface alongside an RF contactless interface operating at 13.56MHz, organized as 8192×8 bits in the I2C mode and 2048×32 bits in the ISO 15693 and ISO 18000-3 mode 1 RF mode. The M24LR64E-R also features an energy harvesting analog output and a user-configurable digital output pin, used as an interrupt, toggling during either RF write in progress or RF busy mode.

[Learn More]

Accel 11 click

5

Accel 11 click features an ultra-low power triaxial accelerometer sensor with embedded intelligence, labeled as the BMA456.

[Learn More]