TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141204 times)
  2. FAT32 Library (73995 times)
  3. Network Ethernet Library (58641 times)
  4. USB Device Library (48759 times)
  5. Network WiFi Library (44457 times)
  6. FT800 Library (44030 times)
  7. GSM click (30784 times)
  8. mikroSDK (29513 times)
  9. PID Library (27334 times)
  10. microSD click (27188 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Brushless 13 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: Brushless

Downloaded: 174 times

Not followed.

License: MIT license  

Brushless 13 Click is a compact add-on board that controls brushless DC motors with any MCU. This board features the STSPIN830, a compact and versatile three-phase and three-sense motor driver from STMicroelectronics. The driver integrates both the control logic and a fully protected low RDson triple half-bridge power stage.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Brushless 13 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Brushless 13 Click" changes.

Do you want to report abuse regarding "Brushless 13 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Brushless 13 Click

Brushless 13 Click is a compact add-on board that controls brushless DC motors with any MCU. This board features the STSPIN830, a compact and versatile three-phase and three-sense motor driver from STMicroelectronics. The driver integrates both the control logic and a fully protected low RDson triple half-bridge power stage.

brushless13_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Aug 2023.
  • Type : I2C type

Software Support

We provide a library for the Brushless 13 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Brushless 13 Click driver.

Standard key functions :

  • brushless13_cfg_setup Config Object Initialization function.

    void brushless13_cfg_setup ( brushless13_cfg_t *cfg );
  • brushless13_init Initialization function.

    err_t brushless13_init ( brushless13_t *ctx, brushless13_cfg_t *cfg );
  • brushless13_default_cfg Click Default Configuration function.

    err_t brushless13_default_cfg ( brushless13_t *ctx );

Example key functions :

  • brushless13_set_mode Brushless 13 set mode pin function.

    void brushless13_set_mode ( brushless13_t *ctx, uint8_t mode_sel );
  • brushless13_get_flt_pin Brushless 13 get fault pin function.

    uint8_t brushless13_get_flt_pin ( brushless13_t *ctx );
  • brushless13_drive_motor Brushless 13 drive motor function.

    err_t brushless13_drive_motor ( brushless13_t *ctx, uint8_t dir, uint8_t speed, uint32_t time_ms );

Example Description

This example demonstrates the use of the Brushless 13 Click board by driving the motor in both directions at different speeds.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void ) 
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    brushless13_cfg_t brushless13_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    brushless13_cfg_setup( &brushless13_cfg );
    BRUSHLESS13_MAP_MIKROBUS( brushless13_cfg, MIKROBUS_1 );
    if ( I2C_MASTER_ERROR == brushless13_init( &brushless13, &brushless13_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( BRUSHLESS13_ERROR == brushless13_default_cfg ( &brushless13 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor in both directions and changes the motor speed approximately every 2 seconds. The driving direction and speed will be displayed on the USB UART.

void application_task ( void ) 
{
    log_printf ( &logger, "\r\n Driving motor clockwise \r\n" );
    for ( uint8_t speed = BRUSHLESS13_SPEED_MIN; speed <= BRUSHLESS13_SPEED_MAX; speed += 20 )
    {
        log_printf ( &logger, " Speed gain: %u\r\n", ( uint16_t ) speed );
        if ( BRUSHLESS13_OK != brushless13_drive_motor ( &brushless13, BRUSHLESS13_DIR_CW, speed, 2000 ) )
        {
            log_error ( &logger, " Drive motor " );
        }
    }
    Delay_ms ( 1000 );

    log_printf ( &logger, "\r\n Driving motor counter-clockwise \r\n" );
    for ( uint8_t speed = BRUSHLESS13_SPEED_MIN; speed <= BRUSHLESS13_SPEED_MAX; speed += 20 )
    {
        log_printf ( &logger, " Speed gain: %u\r\n", ( uint16_t ) speed );
        if ( BRUSHLESS13_OK != brushless13_drive_motor ( &brushless13, BRUSHLESS13_DIR_CCW, speed, 2000 ) )
        {
            log_error ( &logger, " Drive motor " );
        }
    }
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Brushless13

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Thermostat 5 Click

0

Thermostat 5 Click is a compact add-on board designed for precise temperature monitoring and control of external devices. This board features the MCP6022 operational amplifier and MCP3221 A/D converter, both from Microchip, ensuring accurate signal processing. The board features an NTC connector for temperature sensing, a dual-mode signal processing option (analog or digital) selectable via the V SEL jumper, and a high-current J1031C3VDC.15S SPDT relay for external load control. The relay supports up to 2A loads, with an orange LED indicating its active status, while the board operates with 3.3V or 5V logic levels.

[Learn More]

RTD Click

0

RTD Click is based on MAX31865 resistance to digital converter from Maxim Integrated, optimized for platinum resistance temperature detectors, or RTD.

[Learn More]

Magneto 8 click

5

Magneto 8 Click is a compact add-on board that contains an easy-to-program magnetic rotary position sensor with incremental quadrature (A/B) and 12-bit digital outputs. This board features the AS5601, 12-bit programmable contactless encoder IC from AMS-AG.

[Learn More]