TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139242 times)
  2. FAT32 Library (71742 times)
  3. Network Ethernet Library (57115 times)
  4. USB Device Library (47428 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28072 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

Current 10 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.2

mikroSDK Library: 2.0.0.0

Category: Current sensor

Downloaded: 22 times

Not followed.

License: MIT license  

Current 10 Click is a compact add-on board designed for reliable current measurements. This board features the CT455, an XtremeSense™ TMR coreless current sensor from Allegro Microsystems, with a wide 1MHz bandwidth and a sensitivity of 333.3mV/mT, capable of detecting both positive and negative current flows (±6mT). It translates magnetic fields into a linear analog output with less than ±1.0% error across temperature and supply voltage variations.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "Current 10 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "Current 10 Click" changes.

Do you want to report abuse regarding "Current 10 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


Current 10 Click

Current 10 Click is a compact add-on board designed for reliable current measurements. This board features the CT455, an XtremeSense™ TMR coreless current sensor from Allegro Microsystems, with a wide 1MHz bandwidth and a sensitivity of 333.3mV/mT, capable of detecting both positive and negative current flows (±6mT). It translates magnetic fields into a linear analog output with less than ±1.0% error across temperature and supply voltage variations.

current10_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Sep 2024.
  • Type : ADC/I2C type

Software Support

We provide a library for the Current 10 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for Current 10 Click driver.

Standard key functions :

  • current10_cfg_setup Config Object Initialization function.

    void current10_cfg_setup ( current10_cfg_t *cfg );
  • current10_init Initialization function.

    err_t current10_init ( current10_t *ctx, current10_cfg_t *cfg );

Example key functions :

  • current10_calib_offset This function calibrates the zero current offset value.

    err_t current10_calib_offset ( current10_t *ctx );
  • current10_calib_resolution This function calibrates the data resolution at the known load current.

    err_t current10_calib_resolution ( current10_t *ctx, float calib_current );
  • current10_read_current This function reads the input current level [A].

    err_t current10_read_current ( current10_t *ctx, float *current );

Example Description

This example demonstrates the use of Current 10 Click board by reading and displaying the input current measurements.

The demo application is composed of two sections :

Application Init

Initializes the driver and calibrates the zero current offset and data resolution at 3A load current.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    current10_cfg_t current10_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    current10_cfg_setup( &current10_cfg );
    CURRENT10_MAP_MIKROBUS( current10_cfg, MIKROBUS_1 );
    err_t init_flag = current10_init( &current10, &current10_cfg );
    if ( ( ADC_ERROR == init_flag ) || ( I2C_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    log_printf( &logger, " Calibrating zero current offset in 5 seconds...\r\n" );
    log_printf( &logger, " Make sure no current flows through the sensor during the calibration process.\r\n" );
    for ( uint8_t cnt = 5; cnt > 0; cnt-- )
    {
        log_printf( &logger, " %u\r\n", ( uint16_t ) cnt );
        Delay_ms ( 1000 );
    }
    if ( CURRENT10_ERROR == current10_calib_offset ( &current10 ) )
    {
        log_error( &logger, " Calibrate offset." );
        for ( ; ; );
    }
    log_printf( &logger, " Offset calibration DONE.\r\n\n" );

    log_printf( &logger, " Calibrating data resolution in 5 seconds...\r\n" );
    log_printf( &logger, " Keep the load current set at %.1fA during the calibration process.\r\n", 
                CURRENT10_CALIBRATING_CURRENT );
    for ( uint8_t cnt = 5; cnt > 0; cnt-- )
    {
        log_printf( &logger, " %u\r\n", ( uint16_t ) cnt );
        Delay_ms ( 1000 );
    }
    if ( CURRENT10_ERROR == current10_calib_resolution ( &current10, CURRENT10_CALIBRATING_CURRENT ) )
    {
        log_error( &logger, " Calibrate resolution." );
        for ( ; ; );
    }
    log_printf( &logger, " Data resolution calibration DONE.\r\n" );

    log_info( &logger, " Application Task " );
}

Application Task

Reads the input current measurements and displays the results on the USB UART approximately once per second.


void application_task ( void )
{
    float current = 0;
    if ( CURRENT10_OK == current10_read_current ( &current10, &current ) ) 
    {
        log_printf( &logger, " Current : %.1f A\r\n\n", current );
        Delay_ms ( 1000 );
    }
}

Note

The measurement range is approximately: +/- 75A.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.Current10

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

BLE 3 click

0

BLE 3 click is a Bluetooth Low Energy radio module which carries u-blox's NINA-B1 radio. The click can communicate with a target MCU through UART, SPI or I2C.

[Learn More]

Flash 10 Click

0

Flash 10 Click is a compact add-on board representing a highly reliable memory solution. This board features the AT25FF321A, an SPI configurable 32Mbit (2Mx16) serial Flash memory solution from Dialog Semiconductor. The AT25FF321A is an ideal solution for systems in which program code is shadowed from Flash memory into embedded or external RAM (code shadow) for execution and where small amounts of data are stored and updated locally in the Flash memory. It has a flexible and optimized erase architecture for code and data storage applications, non-volatile protection, and four specialized 128-byte OTP security registers to store a unique device ID and locked key storage. This memory can withstand many write cycles (minimum 100k) and has a data retention period greater than 20 years.

[Learn More]

CAN Isolator click

5

CAN Isolator click provides isolated CAN communication. It carries the ADM3053 signal and power isolated CAN transceiver with an integrated isolated DC-to-DC converter. The click is designed to run on either 3.3V or 5V power supply. CAN Isolator click communicates with the target microcontroller over UART interface.

[Learn More]