TOP Contributors

  1. MIKROE (2762 codes)
  2. Alcides Ramos (374 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (118 codes)
  5. Bugz Bensce (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (139244 times)
  2. FAT32 Library (71743 times)
  3. Network Ethernet Library (57115 times)
  4. USB Device Library (47428 times)
  5. Network WiFi Library (43082 times)
  6. FT800 Library (42403 times)
  7. GSM click (29835 times)
  8. mikroSDK (28073 times)
  9. PID Library (26885 times)
  10. microSD click (26198 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

UWB 3 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.5

mikroSDK Library: 2.0.0.0

Category: UWB

Downloaded: 114 times

Not followed.

License: MIT license  

UWB 3 Click is a compact add-on board that brings Ultra-Wideband communication to your application. This board features the DWM3001, a fully integrated UWB transceiver module from Qorvo. The module integrates the DW3110 IC, nRF52833 MCU, planar UWB antenna, accelerometer, power management, and crystal. It is a fully calibrated, tested, and validated design. This Click board™ makes the perfect solution for the development of precision real-time location systems (RTLS) using two-way ranging or TDoA schemes in various markets, location-aware wireless sensor networks (WSNs), and more.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "UWB 3 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "UWB 3 Click" changes.

Do you want to report abuse regarding "UWB 3 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


UWB 3 Click

UWB 3 Click is a compact add-on board that brings Ultra-Wideband communication to your application. This board features the DWM3001, a fully integrated UWB transceiver module from Qorvo. The module integrates the DW3110 IC, nRF52833 MCU, planar UWB antenna, accelerometer, power management, and crystal. It is a fully calibrated, tested, and validated design. This Click board™ makes the perfect solution for the development of precision real-time location systems (RTLS) using two-way ranging or TDoA schemes in various markets, location-aware wireless sensor networks (WSNs), and more.

uwb3_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Sep 2023.
  • Type : UART type

Software Support

We provide a library for the UWB 3 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for UWB 3 Click driver.

Standard key functions :

  • uwb3_cfg_setup Config Object Initialization function.

    void uwb3_cfg_setup ( uwb3_cfg_t *cfg );
  • uwb3_init Initialization function.

    err_t uwb3_init ( uwb3_t *ctx, uwb3_cfg_t *cfg );

Example key functions :

  • uwb3_send_cmd This function sends a specified command to the Click module.

    void uwb3_send_cmd ( uwb3_t *ctx, uint8_t *cmd );
  • uwb3_send_cmd_with_parameter This function sends a command with specified parameter to the Click module.

    void uwb3_send_cmd_with_parameter ( uwb3_t *ctx, uint8_t *cmd, uint8_t *param );
  • uwb3_reset_device This function resets the device by toggling the RST pin state.

    void uwb3_reset_device ( uwb3_t *ctx );

Example Description

This example demonstrates the use of an UWB 3 Click board by showing the communication between the two Click boards.

The demo application is composed of two sections :

Application Init

Initializes the driver and configures the Click board for the selected application mode.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    uwb3_cfg_t uwb3_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    uwb3_cfg_setup( &uwb3_cfg );
    UWB3_MAP_MIKROBUS( uwb3_cfg, MIKROBUS_1 );
    if ( UART_ERROR == uwb3_init( &uwb3, &uwb3_cfg ) ) 
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }
    // Clear buffers
    uwb3_process( &uwb3 );
    uwb3_clear_app_buf( );

    // Switch to stop mode
    uwb3_send_cmd ( &uwb3, UWB3_CMD_STOP );
    uwb3_display_response ( &uwb3 );
    Delay_ms ( 1000 );

#if ( DEMO_APP == APP_RESPONDER_1 )
    uwb3_send_cmd_with_parameter ( &uwb3, UWB3_CMD_RESPF, RESPONDER_1_CONFIG );
    uwb3_display_response ( &uwb3 );
    log_printf( &logger, "Application Mode: Responder 1\r\n" );
#elif ( DEMO_APP == APP_RESPONDER_2 )
    uwb3_send_cmd_with_parameter ( &uwb3, UWB3_CMD_RESPF, RESPONDER_2_CONFIG );
    uwb3_display_response ( &uwb3 );
    log_printf( &logger, "Application Mode: Responder 2\r\n" );
#else
    uwb3_send_cmd_with_parameter ( &uwb3, UWB3_CMD_INITF, INITIATOR_CONFIG );
    uwb3_display_response ( &uwb3 );
    log_printf( &logger, "Application Mode: Initiator\r\n" );
#endif

    uwb3_clear_app_buf( );
    log_info( &logger, " Application Task " );
}

Application Task

Reads and processes all incoming ranging block messages and displays them on the USB UART. One Click board should be configured to initiator mode and the others to responder 1 or 2. The initiator Click displays the address and distance of each responder nodes, while the responder Click boards displays the address and distance of the initiator Click board.

void application_task ( void )
{
    if ( UWB3_OK == uwb3_process( &uwb3 ) ) 
    {
        if ( UWB3_OK == uwb3_parse_ranging_block ( ) )
        {
            uwb3_clear_app_buf( );
        }
    }
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.UWB3

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Charger 19 Click

0

Charger 19 Click is a compact add-on board that contains a battery charger. This board features the nPM1100, an integrated power management IC from Nordic Semiconductor. It has a highly efficient DC/DC buck regulator with automatic selection between hysteretic and PWM modes.

[Learn More]

Ambient 17 Click

0

Ambient 17 Click is a compact add-on board used to measure the amount of the present ambient light. This board features the TSL2572, a digital-output ambient light sensor with an I2C interface from ams AG. The TSL2572 can detect a wide range of illuminance up to 60klx and provides excellent responsivity close to the human eyes' response. It is designed to control the brightness in various applications based on ambient light availability, brightness for optimum visibility, and energy efficiency. Operation in a temperature range of -30°C to 70°C ensures stable operation under extreme conditions.

[Learn More]

Ambient 8 Click

0

Ambient 8 Click is equipped with the ambient light sensor (ALS) IC, providing measurements of the ambient light intensity in a digital format. It utilizes the LTR-329ALS-01, an ALS with the I2C interface.

[Learn More]