TOP Contributors

  1. MIKROE (2655 codes)
  2. Alcides Ramos (353 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (112 codes)
  5. Chisanga Mumba (90 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (136782 times)
  2. FAT32 Library (69979 times)
  3. Network Ethernet Library (55950 times)
  4. USB Device Library (46274 times)
  5. Network WiFi Library (41888 times)
  6. FT800 Library (41184 times)
  7. GSM click (28988 times)
  8. PID Library (26419 times)
  9. mikroSDK (26373 times)
  10. microSD click (25382 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

LTE Cat.1 2 click

Rating:

0

Author: MIKROE

Last Updated: 2024-04-03

Package Version: 2.1.0.6

mikroSDK Library: 2.0.0.0

Category: GSM/LTE

Downloaded: 25 times

Not followed.

License: MIT license  

LTE Cat.1 2 Click (EU) is a compact add-on board that provides your application with complete LTE and VoLTE with CSFB functionalities. This board features the ELS62-E, a single antenna LTE cat.1bis module from Telit.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "LTE Cat.1 2 click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "LTE Cat.1 2 click" changes.

Do you want to report abuse regarding "LTE Cat.1 2 click".

  • Information
  • Comments (0)

mikroSDK Library Blog


LTE Cat.1 2 click

LTE Cat.1 2 Click (EU) is a compact add-on board that provides your application with complete LTE and VoLTE with CSFB functionalities. This board features the ELS62-E, a single antenna LTE cat.1bis module from Telit.

ltecat12_click.png

click Product page


Click library

  • Author : Stefan Ilic
  • Date : Sep 2023.
  • Type : UART type

Software Support

We provide a library for the LTE Cat.1 2 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for LTE Cat.1 2 Click driver.

Standard key functions :

  • ltecat12_cfg_setup Config Object Initialization function.

    void ltecat12_cfg_setup ( ltecat12_cfg_t *cfg );
  • ltecat12_init Initialization function.

    err_t ltecat12_init ( ltecat12_t *ctx, ltecat12_cfg_t *cfg );

Example key functions :

  • ltecat12_max9860_cfg LTE Cat.1 2 MAX9860 configuration function.

    err_t ltecat12_max9860_cfg ( ltecat12_t *ctx );
  • ltecat12_send_cmd LTE Cat.1 2 send command function.

    void ltecat12_send_cmd ( ltecat12_t *ctx, uint8_t *cmd );
  • ltecat12_send_sms_pdu LTE Cat.1 2 send SMS in PDU mode.

    err_t ltecat12_send_sms_pdu ( ltecat12_t *ctx, uint8_t *service_center_number, uint8_t *phone_number, uint8_t *sms_text );

Example Description

Application example shows device capability of connecting to the network and sending SMS, TCP/UDP messages or calling the selected number using standard "AT" commands.

The demo application is composed of two sections :

Application Init

Sets the device configuration for sending SMS, TCP/UDP messages or calling the selected number.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    ltecat12_cfg_t ltecat12_cfg;  /**< Click config object. */

    /**
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX
     * are defined as HAL_PIN_NC, you will
     * need to define them manually for log to work.
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    ltecat12_cfg_setup( &ltecat12_cfg );
    LTECAT12_MAP_MIKROBUS( ltecat12_cfg, MIKROBUS_1 );
    if ( UART_ERROR == ltecat12_init( &ltecat12, &ltecat12_cfg ) )
    {
        log_error( &logger, " Application Init Error. " );
        log_info( &logger, " Please, run program again... " );
        for ( ; ; );
    }

    ltecat12_process( );
    ltecat12_clear_app_buf( );

    // Restart device
    #define RESTART_DEVICE "1,1"
    ltecat12_send_cmd_with_params( &ltecat12, LTECAT12_CMD_CFUN, RESTART_DEVICE );
    error_flag = ltecat12_rsp_check( LTECAT12_RSP_SYSSTART );
    ltecat12_error_check( error_flag );

    // Check communication
    ltecat12_send_cmd( &ltecat12, LTECAT12_CMD_AT );
    error_flag = ltecat12_rsp_check( LTECAT12_RSP_OK );
    ltecat12_error_check( error_flag );

    log_info( &logger, " Application Task " );
    example_state = LTECAT12_CONFIGURE_FOR_NETWORK;
}

Application Task

Depending on the selected demo example, it sends an SMS message (in PDU or TXT mode) or a TCP/UDP message or calls the selected number.

void application_task ( void )
{
    switch ( example_state )
    {
        case LTECAT12_CONFIGURE_FOR_NETWORK:
        {
            if ( LTECAT12_OK == ltecat12_cfg_for_network( ) )
            {
                example_state = LTECAT12_WAIT_FOR_CONNECTION;
            }
            break;
        }
        case LTECAT12_WAIT_FOR_CONNECTION:
        {
            if ( LTECAT12_OK == ltecat12_check_connection( ) )
            {
                example_state = LTECAT12_CONFIGURE_FOR_EXAMPLE;
            }
            break;
        }
        case LTECAT12_CONFIGURE_FOR_EXAMPLE:
        {
            if ( LTECAT12_OK == ltecat12_cfg_for_example( ) )
            {
                example_state = LTECAT12_EXAMPLE;
            }
            break;
        }
        case LTECAT12_EXAMPLE:
        {
            ltecat12_example( );
            break;
        }
        default:
        {
            log_error( &logger, " Example state." );
            break;
        }
    }
}

Note

In order for the examples to work, user needs to set the APN and SMSC (SMS PDU mode only) of entered SIM card as well as the phone number (SMS mode only) to which he wants to send an SMS. Enter valid values for the following macros: SIM_APN, SIM_SMSC and PHONE_NUMBER_TO_MESSAGE.

Example:

  • SIM_APN "internet"
  • SIM_SMSC "+381610401"
  • PHONE_NUMBER_TO_MESSAGE "+381659999999"

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.LTECat12

Additional notes and informations

Depending on the development board you are using, you may need USB UART click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

SPI Isolator 2 click

0

SPI Isolator 2 Click is a compact add-on board that contains a digital isolator optimized for a serial peripheral interface. This board features the ISO7741, a high-performance quad-channel digital isolator with a double capacitive silicon dioxide insulation barrier capable of galvanic isolation up to 5000Vrms from Texas Instruments. The ISO7741 provides high electromagnetic immunity and low emissions at low power consumption while isolating digital I/Os. It has three forward and one reverse-direction channel with enable pins that can be used to put the respective outputs in Hi-Z state. This Click board™ provides a simple, compact solution for isolated SPI data communication.

[Learn More]

ATA663211 click

0

ATA663211 click is a LIN transceiver that carries an Atmel ATA663211 IC and runs on 3.3V power supply. The click communicates with the target MCU through UART connection. The IC is designed to handle low-speed data communication in vehicles.

[Learn More]

Mikromedia+ for PIC32MX7 - RF Communication Example

5

This is demonstration project how Mikromedia+ for PIC32MX7 communicates over RF. Data is send over simple 'led protocol' (1 byte command). Development board for PIC32 with an add-on board nRF Click is used as a receiver device.

[Learn More]