TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (405 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (133 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (141205 times)
  2. FAT32 Library (73995 times)
  3. Network Ethernet Library (58641 times)
  4. USB Device Library (48761 times)
  5. Network WiFi Library (44457 times)
  6. FT800 Library (44030 times)
  7. GSM click (30784 times)
  8. mikroSDK (29513 times)
  9. PID Library (27334 times)
  10. microSD click (27188 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

H-Bridge 14 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.8

mikroSDK Library: 2.0.0.0

Category: Brushed

Downloaded: 182 times

Not followed.

License: MIT license  

H-Bridge 14 Click is a compact add-on board with an H-Bridge gate driver, also known as a full-bridge pre-driver. This board features the DRV8873, an automotive H-Bridge motor driver from Texas Instruments. The DRV8873 is an N-channel H-Bridge motor driver that can drive one bidirectional brushed DC motor, two unidirectional brushed DC motors, solenoids, or other resistive inductive loads.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "H-Bridge 14 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "H-Bridge 14 Click" changes.

Do you want to report abuse regarding "H-Bridge 14 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


H-Bridge 14 Click

H-Bridge 14 Click is a compact add-on board with an H-Bridge gate driver, also known as a full-bridge pre-driver. This board features the DRV8873, an automotive H-Bridge motor driver from Texas Instruments. The DRV8873 is an N-channel H-Bridge motor driver that can drive one bidirectional brushed DC motor, two unidirectional brushed DC motors, solenoids, or other resistive inductive loads.

hbridge14_click.png

Click Product page


Click library

  • Author : Stefan Ilic
  • Date : Sep 2023.
  • Type : I2C/SPI type

Software Support

We provide a library for the H-Bridge 14 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for H-Bridge 14 Click driver.

Standard key functions :

  • hbridge14_cfg_setup Config Object Initialization function.

    void hbridge14_cfg_setup ( hbridge14_cfg_t *cfg );
  • hbridge14_init Initialization function.

    err_t hbridge14_init ( hbridge14_t *ctx, hbridge14_cfg_t *cfg );
  • hbridge14_default_cfg Click Default Configuration function.

    err_t hbridge14_default_cfg ( hbridge14_t *ctx );

Example key functions :

  • hbridge14_set_pins H-Bridge 14 set pins function.

    err_t hbridge14_set_pins ( hbridge14_t *ctx, uint8_t set_mask, uint8_t clr_mask );
  • hbridge14_sleep_state H-Bridge 14 control sleep function.

    err_t hbridge14_sleep_state ( hbridge14_t *ctx, uint8_t sleep_state );
  • hbridge14_drive_motor H-Bridge 14 drive motor function.

    err_t hbridge14_drive_motor ( hbridge14_t *ctx, uint8_t state );

Example Description

This example demonstrates the use of the H-Bridge 14 board by driving the motor in both directions with braking and coasting in between.

The demo application is composed of two sections :

Application Init

Initializes the driver and performs the Click default configuration.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    hbridge14_cfg_t hbridge14_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    hbridge14_cfg_setup( &hbridge14_cfg );
    HBRIDGE14_MAP_MIKROBUS( hbridge14_cfg, MIKROBUS_1 );
    err_t init_flag = hbridge14_init( &hbridge14, &hbridge14_cfg );
    if ( ( I2C_MASTER_ERROR == init_flag ) || ( SPI_MASTER_ERROR == init_flag ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( HBRIDGE14_ERROR == hbridge14_default_cfg ( &hbridge14 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    log_info( &logger, " Application Task " );
}

Application Task

Drives the motor in both directions with coasting and braking in between, every sate is lasting 5 seconds.

void application_task ( void )
{
    uint8_t fault_status = 0;

    hbridge14_drive_motor( &hbridge14, HBRIDGE14_DRIVE_MOTOR_CW );
    log_printf( &logger, " Driving motor Clockwise \r\n" );
    hbridge14_register_read( &hbridge14, HBRIDGE14_REG_FAULT_STATUS, &fault_status );
    log_printf( &logger, " Fault status : 0x%.2X \r\n", ( uint16_t ) fault_status );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    hbridge14_drive_motor( &hbridge14, HBRIDGE14_DRIVE_MOTOR_BRAKE );
    log_printf( &logger, " Brake is on \r\n" );
    hbridge14_register_read( &hbridge14, HBRIDGE14_REG_FAULT_STATUS, &fault_status );
    log_printf( &logger, " Fault status : 0x%.2X \r\n", ( uint16_t ) fault_status );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    hbridge14_drive_motor( &hbridge14, HBRIDGE14_DRIVE_MOTOR_CCW );
    log_printf( &logger, " Driving motor counter-clockwise \r\n" );
    hbridge14_register_read( &hbridge14, HBRIDGE14_REG_FAULT_STATUS, &fault_status );
    log_printf( &logger, " Fault status : 0x%.2X \r\n", ( uint16_t ) fault_status );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );

    hbridge14_drive_motor( &hbridge14, HBRIDGE14_DRIVE_MOTOR_COASTING );
    log_printf( &logger, " Driving motor Coasting \r\n" );
    hbridge14_register_read( &hbridge14, HBRIDGE14_REG_FAULT_STATUS, &fault_status );
    log_printf( &logger, " Fault status : 0x%.2X \r\n", ( uint16_t ) fault_status );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
    Delay_ms ( 1000 );
}

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.HBridge14

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Thermostat 2 click

5

Thermostat 2 Click is a general-purpose thermostat Click board designed to be used with any temperature sensor based on the DS1820 sensor design: 3-pin package with 1-Wire® communication interface.

[Learn More]

NFC Tag 5 Click

0

NFC Tag 5 Click is a compact add-on board that contains a compact NFC tag IC. This board features the M24LR64E-R, a dynamic NFC/RFID tag IC with a dual interface 64-Kbit EEPROM from STMicroelectronics. It features an I2C interface alongside an RF contactless interface operating at 13.56MHz, organized as 8192×8 bits in the I2C mode and 2048×32 bits in the ISO 15693 and ISO 18000-3 mode 1 RF mode. The M24LR64E-R also features an energy harvesting analog output and a user-configurable digital output pin, used as an interrupt, toggling during either RF write in progress or RF busy mode.

[Learn More]

MAGNETO Click

0

MAGNETO Click carries contactless magnetic angle position sensor which delivers precise angle measurements down to 0.05º in 14-bit resolution.

[Learn More]