We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.6
mikroSDK Library: 2.0.0.0
Category: Sub-1 GHz Transceivers
Downloaded: 49 times
Not followed.
License: MIT license
NeoMesh Click - 868MHz is a compact add-on board with a low-power, long-range transceiver, ideal for Mesh wireless networking. This board features the NC1000C-8, a wireless Mesh network module from NeoCortec. With an additional antenna that MikroE offers connected to the module’s u.Fl connector, you can create a fully functional wireless Mesh network node that will work in the Sub-GHz frequency band of 868MHz. The module has a generic application layer that can configured to suit applications.
Do you want to subscribe in order to receive notifications regarding "NeoMesh 868MHz Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "NeoMesh 868MHz Click" changes.
Do you want to report abuse regarding "NeoMesh 868MHz Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
5485_neomesh_868mhz_c.zip [543.30KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for dsPIC XC16 |
|
NeoMesh Click - 868MHz is a compact add-on board with a low-power, long-range transceiver, ideal for Mesh wireless networking. This board features the NC1000C-8, a wireless Mesh network module from NeoCortec. With an additional antenna that MikroE offers connected to the module’s u.Fl connector, you can create a fully functional wireless Mesh network node that will work in the Sub-GHz frequency band of 868MHz. The module has a generic application layer that can configured to suit applications.
We provide a library for the NeoMesh 868MHz Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for NeoMesh 868MHz Click driver.
neomesh868mhz_cfg_setup
Config Object Initialization function.
void neomesh868mhz_cfg_setup ( neomesh868mhz_cfg_t *cfg );
neomesh868mhz_init
Initialization function.
err_t neomesh868mhz_init ( neomesh868mhz_t *ctx, neomesh868mhz_cfg_t *cfg );
neomesh868mhz_send_aapi_frame
This function sends a desired AAPI frame by using UART serial interface.
err_t neomesh868mhz_send_aapi_frame ( neomesh868mhz_t *ctx, neomesh868mhz_aapi_frame_t *frame );
neomesh868mhz_read_aapi_frame
This function reads an AAPI frame by using UART serial interface.
err_t neomesh868mhz_read_aapi_frame ( neomesh868mhz_t *ctx, neomesh868mhz_aapi_frame_t *frame );
neomesh868mhz_send_sapi_frame
This function sends a desired SAPI frame by using UART serial interface.
err_t neomesh868mhz_send_sapi_frame ( neomesh868mhz_t *ctx, neomesh868mhz_sapi_frame_t *frame );
This example demonstrates the use of NeoMesh 868MHz Click board by showing the communication between the two Click boards.
The demo application is composed of two sections :
Initializes the driver and configures the Click board for the selected application mode.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
neomesh868mhz_cfg_t neomesh868mhz_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
neomesh868mhz_cfg_setup( &neomesh868mhz_cfg );
NEOMESH868MHZ_MAP_MIKROBUS( neomesh868mhz_cfg, MIKROBUS_1 );
if ( UART_ERROR == neomesh868mhz_init( &neomesh868mhz, &neomesh868mhz_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
log_printf( &logger, "\r\n Enable SAPI over AAPI\r\n" );
aapi_frame.cmd = NEOMESH868MHZ_CMD_SAPI_TO_AAPI;
aapi_frame.len = 0;
neomesh868mhz_send_aapi_frame ( &neomesh868mhz, &aapi_frame );
neomesh868mhz_parse_sapi_rsp ( NEOMESH868MHZ_SAPI_RSP_BOOTLOADER_START );
log_printf( &logger, "\r\n Login with password\r\n" );
sapi_frame.cmd = NEOMESH868MHZ_SAPI_CMD_LOGIN;
sapi_frame.len = 5;
sapi_frame.payload[ 0 ] = NEOMESH868MHZ_SAPI_LOGIN_PASSWORD_0;
sapi_frame.payload[ 1 ] = NEOMESH868MHZ_SAPI_LOGIN_PASSWORD_1;
sapi_frame.payload[ 2 ] = NEOMESH868MHZ_SAPI_LOGIN_PASSWORD_2;
sapi_frame.payload[ 3 ] = NEOMESH868MHZ_SAPI_LOGIN_PASSWORD_3;
sapi_frame.payload[ 4 ] = NEOMESH868MHZ_SAPI_LOGIN_PASSWORD_4;
neomesh868mhz_send_sapi_frame ( &neomesh868mhz, &sapi_frame );
neomesh868mhz_parse_sapi_rsp ( NEOMESH868MHZ_SAPI_RSP_OK );
log_printf( &logger, "\r\n Set NODE ID to: " );
sapi_frame.cmd = NEOMESH868MHZ_SAPI_CMD_SET_SETTING;
sapi_frame.len = 3;
sapi_frame.payload[ 0 ] = NEOMESH868MHZ_SAPI_SETTINGS_ID_NODE_ID;
#if ( DEMO_APP == APP_RECEIVER_1 )
log_printf( &logger, "%.4X\r\n", ( uint16_t ) NODE_ID_RECEIVER_1 );
sapi_frame.payload[ 1 ] = ( uint8_t ) ( ( NODE_ID_RECEIVER_1 >> 8 ) & 0xFF );
sapi_frame.payload[ 2 ] = ( uint8_t ) ( NODE_ID_RECEIVER_1 & 0xFF );
#elif ( DEMO_APP == APP_RECEIVER_2 )
log_printf( &logger, "%.4X\r\n", ( uint16_t ) NODE_ID_RECEIVER_2 );
sapi_frame.payload[ 1 ] = ( uint8_t ) ( ( NODE_ID_RECEIVER_2 >> 8 ) & 0xFF );
sapi_frame.payload[ 2 ] = ( uint8_t ) ( NODE_ID_RECEIVER_2 & 0xFF );
#elif ( DEMO_APP == APP_ORIGINATOR )
log_printf( &logger, "%.4X\r\n", ( uint16_t ) NODE_ID_ORIGINATOR );
sapi_frame.payload[ 1 ] = ( uint8_t ) ( ( NODE_ID_ORIGINATOR >> 8 ) & 0xFF );
sapi_frame.payload[ 2 ] = ( uint8_t ) ( NODE_ID_ORIGINATOR & 0xFF );
#endif
neomesh868mhz_send_sapi_frame ( &neomesh868mhz, &sapi_frame );
neomesh868mhz_parse_sapi_rsp ( NEOMESH868MHZ_SAPI_RSP_OK );
log_printf( &logger, "\r\n Commit settings\r\n" );
sapi_frame.cmd = NEOMESH868MHZ_SAPI_CMD_COMMIT_SETTINGS;
sapi_frame.len = 0;
neomesh868mhz_send_sapi_frame ( &neomesh868mhz, &sapi_frame );
neomesh868mhz_parse_sapi_rsp ( NEOMESH868MHZ_SAPI_RSP_OK );
log_printf( &logger, "\r\n Start protocol stack\r\n" );
sapi_frame.cmd = NEOMESH868MHZ_SAPI_CMD_START_PROTOCOL_STACK;
sapi_frame.len = 0;
neomesh868mhz_send_sapi_frame ( &neomesh868mhz, &sapi_frame );
neomesh868mhz_parse_sapi_rsp ( NEOMESH868MHZ_SAPI_RSP_PROTOCOL_STACK_START );
// Wait for the device to actually switch back to application layer
while ( !neomesh868mhz_get_cts_pin ( &neomesh868mhz ) );
log_printf( &logger, "\r\n Get NODE info\r\n" );
aapi_frame.cmd = NEOMESH868MHZ_CMD_NODE_INFO;
aapi_frame.len = 0;
neomesh868mhz_send_aapi_frame ( &neomesh868mhz, &aapi_frame );
neomesh868mhz_parse_aapi_rsp ( NEOMESH868MHZ_RSP_NODE_INFO );
log_printf( &logger, "\r\n Get neighbour list\r\n" );
aapi_frame.cmd = NEOMESH868MHZ_CMD_NEIGHBOUR_LIST;
aapi_frame.len = 0;
neomesh868mhz_send_aapi_frame ( &neomesh868mhz, &aapi_frame );
neomesh868mhz_parse_aapi_rsp ( NEOMESH868MHZ_RSP_NEIGHBOUR_LIST );
#if ( DEMO_APP == APP_RECEIVER_1 )
log_printf( &logger, "\r\n Application Mode: Receiver 1\r\n" );
#elif ( DEMO_APP == APP_RECEIVER_2 )
log_printf( &logger, "\r\n Application Mode: Receiver 2\r\n" );
#elif ( DEMO_APP == APP_ORIGINATOR )
log_printf( &logger, "\r\n Application Mode: Originator\r\n" );
#else
#error "Selected application mode is not supported!"
#endif
log_info( &logger, " Application Task " );
}
One Click board should be set to originator mode and the others to receiver 1 or 2. If the SINGLE_RECEIVER_MODE is enabled, the originator device sends a desired message to RECEIVER_1 node and waits for an acknowledge response, otherwise it sends the same message to both RECEIVER_1 and RECEIVER_2 nodes. The receiver devices reads and parses all incoming AAPI frames and displays them on the USB UART.
void application_task ( void )
{
#if ( DEMO_APP == APP_ORIGINATOR )
log_printf( &logger, "\r\n Send message to node: %.4X\r\n", ( uint16_t ) NODE_ID_RECEIVER_1 );
aapi_frame.cmd = NEOMESH868MHZ_CMD_ACK_SEND;
aapi_frame.len = 3 + strlen ( DEMO_TEXT_MESSAGE );
aapi_frame.payload[ 0 ] = ( uint8_t ) ( ( NODE_ID_RECEIVER_1 >> 8 ) & 0xFF );
aapi_frame.payload[ 1 ] = ( uint8_t ) ( NODE_ID_RECEIVER_1 & 0xFF );
aapi_frame.payload[ 2 ] = DEFAULT_PORT;
strcpy ( &aapi_frame.payload[ 3 ], DEMO_TEXT_MESSAGE );
if ( NEOMESH868MHZ_OK == neomesh868mhz_send_aapi_frame ( &neomesh868mhz, &aapi_frame ) )
{
neomesh868mhz_parse_aapi_rsp ( NEOMESH868MHZ_RSP_ACK );
}
#ifndef SINGLE_RECEIVER_MODE
log_printf( &logger, "\r\n Send message to node: %.4X\r\n", ( uint16_t ) NODE_ID_RECEIVER_2 );
aapi_frame.cmd = NEOMESH868MHZ_CMD_ACK_SEND;
aapi_frame.len = 3 + strlen ( DEMO_TEXT_MESSAGE );
aapi_frame.payload[ 0 ] = ( uint8_t ) ( ( NODE_ID_RECEIVER_2 >> 8 ) & 0xFF );
aapi_frame.payload[ 1 ] = ( uint8_t ) ( NODE_ID_RECEIVER_2 & 0xFF );
aapi_frame.payload[ 2 ] = DEFAULT_PORT;
strcpy ( &aapi_frame.payload[ 3 ], DEMO_TEXT_MESSAGE );
if ( NEOMESH868MHZ_OK == neomesh868mhz_send_aapi_frame ( &neomesh868mhz, &aapi_frame ) )
{
neomesh868mhz_parse_aapi_rsp ( NEOMESH868MHZ_RSP_ACK );
}
#endif
#else
neomesh868mhz_parse_aapi_rsp ( NULL );
#endif
}
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.