TOP Contributors

  1. MIKROE (2784 codes)
  2. Alcides Ramos (392 codes)
  3. Shawon Shahryiar (307 codes)
  4. jm_palomino (123 codes)
  5. Bugz Bensce (97 codes)
  6. S P (73 codes)
  7. dany (71 codes)
  8. MikroBUS.NET Team (35 codes)
  9. NART SCHINACKOW (34 codes)
  10. Armstrong Subero (27 codes)

Most Downloaded

  1. Timer Calculator (140535 times)
  2. FAT32 Library (73023 times)
  3. Network Ethernet Library (58027 times)
  4. USB Device Library (48212 times)
  5. Network WiFi Library (43821 times)
  6. FT800 Library (43293 times)
  7. GSM click (30354 times)
  8. mikroSDK (28984 times)
  9. PID Library (27115 times)
  10. microSD click (26717 times)
Libstock prefers package manager

Package Manager

We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]

< Back
mikroSDK Library

NFC 6 Click

Rating:

0

Author: MIKROE

Last Updated: 2024-10-31

Package Version: 2.1.0.5

mikroSDK Library: 2.0.0.0

Category: RFID/NFC

Downloaded: 115 times

Not followed.

License: MIT license  

NFC 6 Click is a compact add-on board that contains an NFC transceiver for contactless communication. This board features the ST25R95, a near-field communication transceiver from STMicroelectronics. It supports reader and writer operating modes and emulates ISO/IEC 14443-3 Type A cards. The RF communications are done over the 13.56MHz. The transceiver features tag detection mode, field detection mode, transmission and reception modes, and more.

No Abuse Reported

Do you want to subscribe in order to receive notifications regarding "NFC 6 Click" changes.

Do you want to unsubscribe in order to stop receiving notifications regarding "NFC 6 Click" changes.

Do you want to report abuse regarding "NFC 6 Click".

  • Information
  • Comments (0)

mikroSDK Library Blog


NFC 6 Click

NFC 6 Click is a compact add-on board that contains an NFC transceiver for contactless communication. This board features the ST25R95, a near-field communication transceiver from STMicroelectronics. It supports reader and writer operating modes and emulates ISO/IEC 14443-3 Type A cards. The RF communications are done over the 13.56MHz. The transceiver features tag detection mode, field detection mode, transmission and reception modes, and more.

nfc6_click.png

Click Product page


Click library

  • Author : Stefan Filipovic
  • Date : Sep 2023.
  • Type : SPI type

Software Support

We provide a library for the NFC 6 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.

Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Library Description

This library contains API for NFC 6 Click driver.

Standard key functions :

  • nfc6_cfg_setup Config Object Initialization function.

    void nfc6_cfg_setup ( nfc6_cfg_t *cfg );
  • nfc6_init Initialization function.

    err_t nfc6_init ( nfc6_t *ctx, nfc6_cfg_t *cfg );
  • nfc6_default_cfg Click Default Configuration function.

    err_t nfc6_default_cfg ( nfc6_t *ctx );

Example key functions :

  • nfc6_send_command This function sends a desired command by using SPI serial interface.

    err_t nfc6_send_command ( nfc6_t *ctx, uint8_t cmd, uint8_t *data_in, uint8_t len );
  • nfc6_read_data This function reads a response data bytes by using SPI serial interface.

    err_t nfc6_read_data ( nfc6_t *ctx, uint8_t *data_out, uint16_t buffer_size, uint16_t *rx_len );
  • nfc6_read_mifare_tag_uid This function reads the UID of a MIFARE ISO14443-A type tags with 4-byte or 7-byte UIDs.

    err_t nfc6_read_mifare_tag_uid ( nfc6_t *ctx, uint8_t *tag_uid, uint8_t *tag_uid_len );

Example Description

This example demonstrates the use of NFC 6 Click board by reading MIFARE ISO/IEC 14443 type A tag UID.

The demo application is composed of two sections :

Application Init

Initializes the driver and logger, performs the Click default configuration and reads the device ID.


void application_init ( void )
{
    log_cfg_t log_cfg;  /**< Logger config object. */
    nfc6_cfg_t nfc6_cfg;  /**< Click config object. */

    /** 
     * Logger initialization.
     * Default baud rate: 115200
     * Default log level: LOG_LEVEL_DEBUG
     * @note If USB_UART_RX and USB_UART_TX 
     * are defined as HAL_PIN_NC, you will 
     * need to define them manually for log to work. 
     * See @b LOG_MAP_USB_UART macro definition for detailed explanation.
     */
    LOG_MAP_USB_UART( log_cfg );
    log_init( &logger, &log_cfg );
    log_info( &logger, " Application Init " );

    // Click initialization.
    nfc6_cfg_setup( &nfc6_cfg );
    NFC6_MAP_MIKROBUS( nfc6_cfg, MIKROBUS_1 );
    if ( SPI_MASTER_ERROR == nfc6_init( &nfc6, &nfc6_cfg ) )
    {
        log_error( &logger, " Communication init." );
        for ( ; ; );
    }

    if ( NFC6_ERROR == nfc6_default_cfg ( &nfc6 ) )
    {
        log_error( &logger, " Default configuration." );
        for ( ; ; );
    }

    uint8_t device_id[ 13 ] = { 0 };
    nfc6_send_command ( &nfc6, NFC6_CMD_IDN, NULL, NULL );
    if ( NFC6_OK == nfc6_read_data ( &nfc6, device_id, sizeof ( device_id ), NULL ) )
    {
        log_printf ( &logger, " Device ID: %s\r\n", device_id );
    }

    log_info( &logger, " Application Task " );
}

Application Task

If there's a tag detected, it reads its UID and displays it on the USB UART every 500ms.

void application_task ( void )
{
    uint8_t tag_uid[ NFC6_TAG_UID_MAX_LEN ] = { 0 };
    uint8_t tag_uid_len = 0;
    if ( NFC6_OK == nfc6_read_mifare_tag_uid ( &nfc6, tag_uid, &tag_uid_len ) )
    {
        log_printf( &logger, " TAG UID: " );
        for ( uint8_t cnt = 0; cnt < tag_uid_len; cnt++ )
        {
            log_printf( &logger, "0x%.2X ", ( uint16_t ) tag_uid[ cnt ] );
        }
        log_printf( &logger, "\r\n----------------------------------\r\n" );
        Delay_ms ( 500 );
    }
}

Note

Only ISO14443-A type tags with 4-byte or 7-byte UIDs are compatible with this example. We recommend MIKROE-1475 - an RFiD tag 13.56MHz compliant with ISO14443-A standard.

The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.

Other Mikroe Libraries used in the example:

  • MikroSDK.Board
  • MikroSDK.Log
  • Click.NFC6

Additional notes and informations

Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.


ALSO FROM THIS AUTHOR

Battery Source Click

0

Battery Source Click is a compact add-on board designed to boost power from a battery for portable applications. This board features the TPS81256, a high-efficiency step-up converter from Texas Instruments. The board boosts input voltage (2.5V to 5.5V) to 5V/1A on a USB Type-C connector. It operates at a 4MHz switching frequency, enters Power-Save mode at light loads, and reduces supply current to 43μA during light load operation. The board supports over 3W output power and has an input current of less than 1µA in shutdown mode, maximizing battery life.

[Learn More]

Air Motion Click

0

Air Motion Click is a compact add-on board that contains a 6-axis inertial measurement unit. This board features TDK InvenSense’s ICM-40627, a 6-axis MEMS MotionTracking™ device that combines a 3-axis user-selectable gyroscope accelerometer.

[Learn More]

SPIRIT Click

0

SPIRIT Click carries the SP1ML 868MHz ultra low-power RF module. The board is designed to use 3.3V power supply and 3.3V or 5V I/O voltage levels. It communicates with the target MCU over UART interface, with additional functionality provided by the following pins on the mikroBUS™ line: PWM, RST, CS.

[Learn More]