We strongly encourage users to use Package manager for sharing their code on Libstock website, because it boosts your efficiency and leaves the end user with no room for error. [more info]
Rating:
Author: MIKROE
Last Updated: 2024-10-31
Package Version: 2.1.0.5
mikroSDK Library: 2.0.0.0
Category: RFID/NFC
Downloaded: 97 times
Not followed.
License: MIT license
NFC 6 Click is a compact add-on board that contains an NFC transceiver for contactless communication. This board features the ST25R95, a near-field communication transceiver from STMicroelectronics. It supports reader and writer operating modes and emulates ISO/IEC 14443-3 Type A cards. The RF communications are done over the 13.56MHz. The transceiver features tag detection mode, field detection mode, transmission and reception modes, and more.
Do you want to subscribe in order to receive notifications regarding "NFC 6 Click" changes.
Do you want to unsubscribe in order to stop receiving notifications regarding "NFC 6 Click" changes.
Do you want to report abuse regarding "NFC 6 Click".
DOWNLOAD LINK | RELATED COMPILER | CONTAINS |
---|---|---|
5493_nfc_6_click.zip [567.95KB] | mikroC AI for ARM GCC for ARM Clang for ARM mikroC AI for PIC mikroC AI for PIC32 XC32 GCC for RISC-V Clang for RISC-V mikroC AI for AVR mikroC AI for dsPIC XC16 |
|
NFC 6 Click is a compact add-on board that contains an NFC transceiver for contactless communication. This board features the ST25R95, a near-field communication transceiver from STMicroelectronics. It supports reader and writer operating modes and emulates ISO/IEC 14443-3 Type A cards. The RF communications are done over the 13.56MHz. The transceiver features tag detection mode, field detection mode, transmission and reception modes, and more.
We provide a library for the NFC 6 Click as well as a demo application (example), developed using MikroElektronika compilers. The demo can run on all the main MikroElektronika development boards.
Package can be downloaded/installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
This library contains API for NFC 6 Click driver.
nfc6_cfg_setup
Config Object Initialization function.
void nfc6_cfg_setup ( nfc6_cfg_t *cfg );
nfc6_init
Initialization function.
err_t nfc6_init ( nfc6_t *ctx, nfc6_cfg_t *cfg );
nfc6_default_cfg
Click Default Configuration function.
err_t nfc6_default_cfg ( nfc6_t *ctx );
nfc6_send_command
This function sends a desired command by using SPI serial interface.
err_t nfc6_send_command ( nfc6_t *ctx, uint8_t cmd, uint8_t *data_in, uint8_t len );
nfc6_read_data
This function reads a response data bytes by using SPI serial interface.
err_t nfc6_read_data ( nfc6_t *ctx, uint8_t *data_out, uint16_t buffer_size, uint16_t *rx_len );
nfc6_read_mifare_tag_uid
This function reads the UID of a MIFARE ISO14443-A type tags with 4-byte or 7-byte UIDs.
err_t nfc6_read_mifare_tag_uid ( nfc6_t *ctx, uint8_t *tag_uid, uint8_t *tag_uid_len );
This example demonstrates the use of NFC 6 Click board by reading MIFARE ISO/IEC 14443 type A tag UID.
The demo application is composed of two sections :
Initializes the driver and logger, performs the Click default configuration and reads the device ID.
void application_init ( void )
{
log_cfg_t log_cfg; /**< Logger config object. */
nfc6_cfg_t nfc6_cfg; /**< Click config object. */
/**
* Logger initialization.
* Default baud rate: 115200
* Default log level: LOG_LEVEL_DEBUG
* @note If USB_UART_RX and USB_UART_TX
* are defined as HAL_PIN_NC, you will
* need to define them manually for log to work.
* See @b LOG_MAP_USB_UART macro definition for detailed explanation.
*/
LOG_MAP_USB_UART( log_cfg );
log_init( &logger, &log_cfg );
log_info( &logger, " Application Init " );
// Click initialization.
nfc6_cfg_setup( &nfc6_cfg );
NFC6_MAP_MIKROBUS( nfc6_cfg, MIKROBUS_1 );
if ( SPI_MASTER_ERROR == nfc6_init( &nfc6, &nfc6_cfg ) )
{
log_error( &logger, " Communication init." );
for ( ; ; );
}
if ( NFC6_ERROR == nfc6_default_cfg ( &nfc6 ) )
{
log_error( &logger, " Default configuration." );
for ( ; ; );
}
uint8_t device_id[ 13 ] = { 0 };
nfc6_send_command ( &nfc6, NFC6_CMD_IDN, NULL, NULL );
if ( NFC6_OK == nfc6_read_data ( &nfc6, device_id, sizeof ( device_id ), NULL ) )
{
log_printf ( &logger, " Device ID: %s\r\n", device_id );
}
log_info( &logger, " Application Task " );
}
If there's a tag detected, it reads its UID and displays it on the USB UART every 500ms.
void application_task ( void )
{
uint8_t tag_uid[ NFC6_TAG_UID_MAX_LEN ] = { 0 };
uint8_t tag_uid_len = 0;
if ( NFC6_OK == nfc6_read_mifare_tag_uid ( &nfc6, tag_uid, &tag_uid_len ) )
{
log_printf( &logger, " TAG UID: " );
for ( uint8_t cnt = 0; cnt < tag_uid_len; cnt++ )
{
log_printf( &logger, "0x%.2X ", ( uint16_t ) tag_uid[ cnt ] );
}
log_printf( &logger, "\r\n----------------------------------\r\n" );
Delay_ms ( 500 );
}
}
Only ISO14443-A type tags with 4-byte or 7-byte UIDs are compatible with this example. We recommend MIKROE-1475 - an RFiD tag 13.56MHz compliant with ISO14443-A standard.
The full application code, and ready to use projects can be installed directly from NECTO Studio Package Manager(recommended way), downloaded from our LibStock™ or found on Mikroe github account.
Other Mikroe Libraries used in the example:
Additional notes and informations
Depending on the development board you are using, you may need USB UART Click, USB UART 2 Click or RS232 Click to connect to your PC, for development systems with no UART to USB interface available on the board. UART terminal is available in all MikroElektronika compilers.